The binding of glucagon to its hepatic receptor triggers a G-protein-mediated signal that ultimately leads to an increase in hepatic glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis). In order to elucidate the structural domain(s) of the human glucagon receptor (hGR) involved in the selective binding of glucagon, a series of chimeras was constructed in which various domains of the hGR were replaced by homologous regions from the receptor for the glucoincretin hormone, glucagon-like peptide I (GLP-IR). hGR and GLP-IR are quite similar (47% amino acid identify) yet have readily distinguishable ligand binding characteristics; glucagon binds to the recombinant hGR expressed in COS-7 cells with a Kd that is 1000-fold lower than the Kd for glucagon binding to GLP-IR. In the present study, chimeric receptors were transiently expressed in COS-7 cells and analyzed for glucagon binding. Expression of each receptor chimera was confirmed by immunofluorescence staining using a hGR-specific monoclonal antibody. This report identifies several non-contiguous domains of the hGR that are important for high affinity glucagon binding. Most notable are the membrane-proximal half of the amino-terminal extension, the first extracellular loop, and the third, fourth, and sixth transmembrane domains.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.13.7474DOI Listing

Publication Analysis

Top Keywords

glucagon binding
16
glucagon
8
binding glucagon
8
domains hgr
8
expressed cos-7
8
cos-7 cells
8
binding
7
receptor
5
domains
5
hgr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!