Lupus prone NZB/W mice repeatedly exposed to bacterial lipopolysaccharide (LPS) develop enhanced polyclonal B cell activation and exacerbated nephritis by a mechanism that results in increased deposits of immunoreactants in kidneys without measurable impairment of mononuclear phagocyte function. In this paper, we investigate whether the referenced effects of LPS are reversible after withdrawal of LPS, or whether their persistence could contribute to progression of nephritis to chronicity. In NZB/W mice previously exposed to LPS, features of enhanced polyclonal B cell activation, more severe glomerulonephritis with tubulointerstitial involvement, increased deposits of immunoreactants in glomeruli, and altered protein excretion persisted 6 weeks after LPS was discontinued. Additionally, mononuclear phagocyte function, assessed through liver uptake of radiolabeled immune complexes, was found to be impaired. The results indicate that some of the effects of prior exposure to LPS may be partially reversible; however, they last long after LPS has been discontinued, and additional impairment of immune function develops together with permanent glomerular dysfunction, thereby contributing to progression of nephritis to chronicity.

Download full-text PDF

Source
http://dx.doi.org/10.1177/096120339400300614DOI Listing

Publication Analysis

Top Keywords

nzb/w mice
12
bacterial lipopolysaccharide
8
enhanced polyclonal
8
polyclonal cell
8
cell activation
8
increased deposits
8
deposits immunoreactants
8
mononuclear phagocyte
8
phagocyte function
8
progression nephritis
8

Similar Publications

Purpose: The co-inhibitory receptor B and T Lymphocyte Attenuator (BTLA) negatively regulates B and T cell activation. We have previously shown an altered BTLA expression by regulatory T cells and an impaired capacity of BTLA to inhibit CD4 T cell activation in lupus patients. In this study, we analyzed BTLA expression and function in the NZB/W lupus-mouse model and examined the therapeutic potential of BTLA targeting.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction and macrophage dysregulation are important in autoimmune diseases, but how they connect is not fully understood.
  • The study focuses on the role of chronic low-level interferon-gamma (IFN-γ) using a mouse model with lupus-like symptoms, finding that this condition suppresses mitochondrial function, especially in the kidneys.
  • It suggests that restoring mitochondrial function could improve macrophage activity and provide new targets for treating autoimmune diseases like lupus nephritis.
View Article and Find Full Text PDF

Therapeutic effects of extracellular vesicles derived from mesenchymal stem cells primed with disease-conditioned-immune cells in systemic lupus erythematosus.

Arthritis Res Ther

November 2024

GenNBio Inc, 80, Deurimsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17796, Republic of Korea.

Article Synopsis
  • Systemic lupus erythematosus (SLE) is a chronic, incurable autoimmune disease, prompting the need for effective treatments, such as using extracellular vesicles (EV) from mesenchymal stem cells (iMSCs) primed with immune cell media.
  • In the study, female NZB/W F1 mice were divided into three groups to assess the effects of CM-EV and ASC-EV treatments compared to a control group, with assessment done over 36 weeks.
  • Results showed that CM-EV treatment enhanced survival rates, reduced harmful antibodies, and improved kidney health, while both EV types decreased pro-inflammatory macrophages, indicating their potential in modulating SLE’s immune response.
View Article and Find Full Text PDF

Neuropilin-1 as a Key Molecule for Renal Recovery in Lupus Nephritis: Insights from an NZB/W F1 Mouse Model.

Int J Mol Sci

October 2024

Rheumatology Research Group-Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.

Article Synopsis
  • - Systemic lupus erythematosus (SLE) is an autoimmune disease affecting many organs, with lupus nephritis (LN) impacting 40-50% of patients and potentially leading to serious kidney complications like end-stage renal disease (ESRD).
  • - This study investigates the role of neuropilin-1 (NRP-1), a receptor in kidney tissue, as a biomarker for kidney recovery in LN using a mouse model, demonstrating a significant increase in NRP-1 levels over time.
  • - High urinary NRP-1 levels (above 34.40 ng/mL) were strongly associated with positive renal outcomes, highlighting NRP-1's potential as a reliable biomarker for kidney recovery in
View Article and Find Full Text PDF
Article Synopsis
  • Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect multiple organs, with kidney issues (lupus nephritis) being a serious complication and a leading cause of death in affected patients.
  • Current mouse models used to study SLE/LN show diverse immune responses that may not fully reflect human disease, highlighting the need for better models that parallel human pathways for developing new treatments.
  • The research compared the immune responses of five different mouse models of SLE/LN to human data, finding differences in cell types and responses, which could help in understanding the disease and improving therapy translation for patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!