Processing of synaptic information depends on the structure of the dendritic tree.

Neuroreport

Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra.

Published: December 1994

The consequences of dendritic geometry for the processing of synaptic information was analysed in two types of motion-sensitive neurones in the visual system of the fly. These neurones differ conspicuously in the morphology of their dendrites but receive their input from the same type of local motion-sensitive elements. Intracellular recording and activating selected regions of the dendrite by visual motion showed that, in accordance with cable theory of nerve cells, the way in which postsynaptic signals interact is essentially determined by the structure of the dendritic tree.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-199412300-00052DOI Listing

Publication Analysis

Top Keywords

processing synaptic
8
structure dendritic
8
dendritic tree
8
synaptic depends
4
depends structure
4
tree consequences
4
consequences dendritic
4
dendritic geometry
4
geometry processing
4
synaptic analysed
4

Similar Publications

Background: Alzheimer's disease (AD) is an irreversible age-related neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles. Di Huang Yi Zhi (DHYZ) formula, a traditional Chinese herbal compound comprising several prescriptions, demonstrates properties that improve cognitive abilities in clinical. Nonetheless, its molecular mechanisms on treating AD through improving neuron cells mitochondria function have not been deeply investigated.

View Article and Find Full Text PDF

Mouse-derived Synaptosomes Trypsin Cleavage Assay to Characterize Synaptic Protein Sub-localization.

Bio Protoc

January 2025

Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.

View Article and Find Full Text PDF

Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease.

Cell Death Differ

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) is recognized as a pivotal cortical region involved in the perception of pain. The retrosplenial cortex (RSC), located posterior to the ACC, is known to play a significant role in navigation and memory processes. Although the projections from the RSC to the ACC have been found, the specifics of the synaptic connections and the functional implications of the RSC-ACC projections remain less understood.

View Article and Find Full Text PDF

Generalized learning is a fundamental process observed across species, contexts, and sensory modalities that enables animals to use past experiences to adapt to changing conditions. Evidence suggests that the prefrontal cortex (PFC) extracts general features of an experience that can be used across multiple situations. The anterior cingulate cortex (ACC), a region of the PFC, is implicated in generalized fear responses to novel contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!