A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective water model for Monte Carlo simulations of proteins. | LitMetric

Effective water model for Monte Carlo simulations of proteins.

Biopolymers

Department of Biomedical Engineering, Boston University, MA 02215.

Published: March 1995

We present an effective theory for water. Our goal is to formulate an accurate model for the effects of solvation on protein dynamics, without incurring the huge computational cost and the slow temporal evolution typical of molecular dynamics simulations of liquids. We replace the individual water molecules in an all-atom potential with a local dielectric density field, with self-interactions given by the Landau-Ginzburg free energy and external interactions by Lennard-Jones forces at the surface of the protein atoms. We explore conformational space with finite temperature Monte Carlo dynamics, using parallel Langevin and Fourier acceleration algorithms well suited to data-parallel computer architectures such as the Connection Machine. To establish the validity of our approximations, we compare our electrostatic contribution to the solvation energy with the results of Lim, Bashford, and Karplus using a conventional static continuum dielectric cavity model, and the nonelectrostatic contributions with estimates of hydrophobic surface free energy. Our model can also accommodate ionic charges and temperature fluctuations. We propose future investigations extending our effective theory of solvation to include explicit orientational entropy and hydrogen-bonding terms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.360350308DOI Listing

Publication Analysis

Top Keywords

monte carlo
8
effective theory
8
free energy
8
effective water
4
model
4
water model
4
model monte
4
carlo simulations
4
simulations proteins
4
proteins effective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!