Pathogenic potential of lactobacilli.

Int J Food Microbiol

Institute of Dental Research, Surry Hills, N.S.W., Australia.

Published: December 1994

Lactobacilli are often considered to be commensal or beneficial participants in human microbial ecology and considerable research is being carried out into the effects of the use of lactobacilli as additives in both human and animal diets. However, lactobacilli also cause some human diseases (e.g. dental caries, rheumatic vascular disease, septicaemia and infective endocarditis (IE)), and have recently been identified as potential emerging pathogens in elderly and immunocompromised patients, particularly those receiving broad spectrum antibiotic therapy. The identification of potential pathogenic traits amongst lactobacilli will therefore facilitate the use of the organisms for probiotic purposes. The ability to aggregate human platelets is considered to be a possible pathogenic trait in the progression of IE. A comparison of bacterial cell surface properties amongst L. rhamnosus strains showed that platelets were aggregated by 5/5 IE strains and 8/16 laboratory strains. For the L. paracasei subsp. paracasei strains the respective numbers were 2/5 and 2/9. However two strains, morphological mutants of a non-aggregating strain, which had been re-isolated after passaging through rats were found to aggregate platelets. No loss of aggregating function occurred on extensive subculturing of IE strains. Aggregation also occurred with 11/14 strains for five other species, namely, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus oris, Lactobacillus plantarum and Lactobacillus salvivarius, with each species being represented indicating that the property is not uncommon in the genus. A comparison of IE and oral isolates of L. rhamnosus and L. paracasei subsp. paracasei and seven other Lactobacillus species, has shown that the binding of both fibronectin and fibrinogen by lactobacilli is greatly increased, up to 50 fold, when the pH is reduced from 7.0 to 5.0. Re-exposing the lactobacilli to a neutral pH environment releases most of the bound proteins, but the amount still remaining bound to the cell is several times more than is bound at neutral pH. Lactobacilli will also bind to the proteins that make up the extracellular matrix of endothelial cells. Lactobacilli bound significantly better to collagen types I and V than to types III and IV (p < 0.01). Further, strains isolated from IE cases, particularly L. rhamnosus strains, bound significantly better to types I and V than did 'normal' strains (p < 0.02). Type V collagen has been demonstrated at the sites of endothelial damage. Thus the binding of lactobacilli, particularly L. rhamnosus to these collagen types may be of importance in the early stages of colonization of the damaged heart valve.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0168-1605(94)90117-1DOI Listing

Publication Analysis

Top Keywords

lactobacilli
10
strains
10
lactobacilli will
8
rhamnosus strains
8
paracasei subsp
8
subsp paracasei
8
bound better
8
collagen types
8
lactobacillus
6
bound
5

Similar Publications

Objective: This systematic review aimed to determine the differences in the caries-associated microbiota and caries experience among children with type 1 diabetes (T1D) compared to healthy children in observational studies.

Design: Registered in PROPSERO (CRD42024529842), this review involved searching four electronic databases (PubMed, Embase, Scopus and Web of Science) from inception to April 2024. Citation searching was further performed on eligible studies from the database search.

View Article and Find Full Text PDF

PEARL: Protein Eluting Alginate with Recombinant Lactobacilli.

Small

January 2025

INM - Leibniz Institute for New Materials, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany.

Engineered living materials (ELMs) made of bacteria in hydrogels have shown considerable promise for therapeutic applications through controlled and sustained release of complex biopharmaceuticals at low costs and with reduced wastage. While most therapeutic ELMs use E. coli due to its large genetic toolbox, most live biotherapeutic bacteria in development are lactic acid bacteria due to native health benefits they offer.

View Article and Find Full Text PDF

Role of nasal microbiota in regulating host anti-influenza immunity in dogs.

Microbiome

January 2025

Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Background: Numerous studies have confirmed a close relationship between the pathogenicity of influenza and respiratory microbiota, but the mechanistic basis for this is poorly defined. Also, the majority of these studies have been conducted on murine models, and it remains unclear how far these findings can be extrapolated from murine models to other animals. Considering that influenza A virus is increasingly recognized as an important canine respiratory pathogen, this study investigated the cross-talk between nasal and lung tissues mediated by microbes and its association with influenza susceptibility in a beagle dog model.

View Article and Find Full Text PDF

New plant-based kefir fermented beverages as potential source of GABA.

J Food Sci Technol

February 2025

Food Science and Nutrition Department, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato, Campinas, SP 13083-862 Brazil.

The aim of this study was to assess the gamma-aminobutyric acid (GABA) production in plant-based fermented beverages with kefir cultures (milk and water kefir). Water-soluble extracts of peanut and Brazil nut were evaluated as non-dairy substrates for the development of new bioactive beverages. A total of 12 formulations were developed and evaluated for their chemical composition, physical chemical characterization, and microbiological counts (aerobic mesophilic bacteria, lactobacilli, lactococci and yeasts).

View Article and Find Full Text PDF

Several studies have suggested that probiotics could play a role in the management of patients with chronic bacterial prostatitis (CBP). In this randomized, placebo-controlled clinical study, we evaluated the efficacy and safety of consumption of probiotics containing human DG as an add-on treatment in patients with clinical recurrences of CBP, through gut microbiota modification analysis. Enrolled patients with CBP were randomized to receive for 3 months probiotics containing human DG or placebo following 1 month treatment with ciprofloxacin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!