rbSec1 is a mammalian neuronal protein homologous to the yeast SEC1 gene product which is required for exocytosis. Mutations in Sec1 homologues in the nervous systems of C. elegans and D. melanogaster lead to defective neurotransmitter secretion. Biochemical studies have shown that recombinant rbSec1 binds syntaxin 1 but not SNAP-25 or synaptobrevin/VAMP, the two proteins which together with syntaxin 1 form the synaptic SNARE complex. In this study we have examined the subcellular localization of rbSec1 and the degree of interaction between rbSec1 and syntaxin 1 in situ. rbSec1, which we show here to be represented by two alternatively spliced isoforms, rbSec1A and B, has a widespread distribution in the axon and is not restricted to the nerve terminal. This distribution parallels the localization of syntaxin 1 and SNAP-25 along the entire axonal plasmalemma. rbSec1 is found in a soluble and a membrane-associated form. Although a pool of rbSec1 is present on the plasmalemma, the majority of membrane-bound rbSec1 is not associated with syntaxin 1. We also show that rbSec1 is not part of the synaptic SNARE complex or of the syntaxin 1/SNAP-25 complex we show to be present in non-synaptic regions of the axon. Thus, in spite of biochemical studies demonstrating the high affinity interaction of rbSec1 and syntaxin 1, our results indicate that rbSec1 and syntaxin 1 are not stably associated. They also suggest that the function of rbSec1, syntaxin 1, and SNAP-25 is not restricted to synaptic vesicle exocytosis at the synapse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120371 | PMC |
http://dx.doi.org/10.1083/jcb.129.1.105 | DOI Listing |
Int J Mol Sci
January 2025
Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA; Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA. Electronic address:
The complex mechanism of synaptic vesicle fusion with the plasma membrane for neurotransmitter release is initiated by the formation of the SNARE complex at the presynaptic terminal of the neuron. The SNARE complex is composed of four helices contributed by three proteins: one from syntaxin (localized at the plasma membrane), one from synaptobrevin (localized at the synaptic vesicle), and two from the intrinsically disordered and aggregation-prone synaptosomal-associated 25 kDa protein (SNAP-25), which is localized to the plasma membrane by virtue of palmitoylation of cysteine residues. The fusion process is tightly regulated and requires the constitutively expressed Hsp70 chaperone (Hsc70) and its J-protein co-chaperone CSPα.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany.
The Ca sensor synaptotagmin-1 (Syt1) triggers neurotransmitter release together with the neuronal sensitive factor attachment protein receptor (SNARE) complex formed by syntaxin-1, SNAP25, and synaptobrevin. Moreover, Syt1 increases synaptic vesicle (SV) priming and impairs spontaneous vesicle release. The Syt1 CB domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of Syt1 and the mechanism underlying Ca triggering of release are unknown.
View Article and Find Full Text PDFMol Syndromol
October 2024
Celal Bayar University School of Medicine, Department of Child Neurology, Manisa, Turkey.
Introduction: As with many genetic diseases, the diagnostic role of next-generation sequencing is invaluable for early-onset epileptic encephalopathies. SNARE proteins in synaptic vesicles (synaptobrevin-2) and synaptic plasma membrane (syntaxin-1, SNAP-25) are involved in synaptic exocytosis and recycling.
Patient Presentation: Here, we report a patient that started in early childhood with seizures resistant to antiepileptic drugs, then developed epileptic encephalopathy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!