Studies of cell population dynamics and microenvironmental organization of B lymphopoiesis in the bone marrow of normal mice and in various genetically modified states have shown that cell loss, involving processes of apoptosis and macrophage-mediated cell deletion, is a prominent feature of the primary genesis of B lymphocytes. Balanced against the influence of proliferative stimulants, the programmed death of precursor B cells provides a quantitative control, determining the magnitude of the final output of functional B lymphocytes to the peripheral immune system. The cell loss mechanisms can be readily set in motion by external or systemic influences, making the B-cell output particularly vulnerable to suppression by ionizing irradiation, stress or other systemic mediators. In addition, however, cell loss exerts an important quality control in the formation of the primary B-cell repertoire. The combination of apoptosis and macrophage-mediated deletion, acting at successive stages of B-cell differentiation, efficiently eliminates many precursors having non-productive Ig gene rearrangements, cell cycle dysregulations, and certain autoreactive Ig specificities. Outstanding areas of further work abound. Important questions concern the nature of mechanisms which underlie the processes of B-cell apoptosis and macrophage deletion in bone marrow, the microenvironmental signals involved in B-cell life or death decisions and genetic factors which may override these B-cell culling mechanisms. The answers will be relevant to problems of autoimmune disease, humoral immunodeficiency and B-cell neoplasia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-065x.1994.tb00891.xDOI Listing

Publication Analysis

Top Keywords

apoptosis macrophage-mediated
12
bone marrow
12
cell loss
12
macrophage-mediated cell
8
cell deletion
8
cell
7
b-cell
7
apoptosis
4
deletion
4
deletion regulation
4

Similar Publications

Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects.

View Article and Find Full Text PDF

In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer. Paclitaxel (PTX), typically administered intravenously (IV) as chemotherapy, shows promise for triggering immunogenic cell death (ICD) and may serve as a potential immunotherapy. This study introduces an oral PTX delivery method using an enteric-coated gelatin capsule containing capric acid oil and an effervescent agent, optionally with decylamine-conjugated β-glucans (DA-βGlus).

View Article and Find Full Text PDF

CD47 is expressed on cell surfaces and acts as a "don't eat me" signal by interacting with signal-regulatory protein-α on the macrophage surface. Some cancer cells express CD47 protein and can evade macrophage phagocytosis. Herein, we evaluated the feasibility of targeting CD47 for osteosarcoma by analyzing its expression patterns, clinicopathological correlations, and immunotherapeutic potential.

View Article and Find Full Text PDF

PTX3 exacerbates hepatocyte pyroptosis in hepatic ischemia-reperfusion injury by promoting macrophage M1 polarization.

Int Immunopharmacol

December 2024

Organ Transplant Center, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China. Electronic address:

Backgrounds: Hepatic ischemia-reperfusion injury (IRI) triggers macrophage activation, which in turn mediates inflammatory responses and affects tissue repair and injury severity. Pentraxin 3 (PTX3) is vital in immune regulation and inflammatory processes. In this study, we aim to investigate the potential role of PTX3 in macrophage-mediated hepatic IRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!