We used patch-clamp techniques to study the channels that underlie the Na+ conductance of the apical membrane of human normal nasal epithelial cells. Cells were cultured on permeable supports and studied after confluence. In 172 of 334 (52%) excised membrane patches, we observed 20-pS Na(+)-permeable channels that do not discriminate between Na+ and K+ (pNa/pK = 1.33). These nonselective cation channels contained subpopulations that differed by dependence of open probability on voltage and bath Ca2+ activity, suggesting two or more channel types with similar electrical properties. In the presence of 10(-4) M amiloride in the pipette, the proportion of excised patches with nonselective cation channels decreased to 52 of 139 patches (37%), but the decrease was spread across all subpopulations of nonselective cation channels in excised patches. Thus no distinctive Na(+)-selective amiloride-sensitive channels were identified in excised patches. In cell-attached patches, Na(+)-permeable channels were recorded in 56 of 262 patches (21%). Their conductance was 21.4 +/- 1.5 pS (n = 25), and most were selective for Na+ over K+ (pNa/pK > 6). In the presence of amiloride (10(-4) M) in the pipette, the frequency of lambda Na(+)-permeable channels in cell-attached patches decreased to 8 of 134 patches (6%), revealing a population of Na(+)-selective channels recorded in cell-attached patches that was inhibited by amiloride. We conclude that, in excised patches, Na(+)-permeable channels are nonselective for Na+ over K+ and < 30% appear to be amiloride sensitive. In contrast, in cell-attached patches, most channels that conduct sodium are 1) selective for Na+ over K+ and 2) amiloride sensitive. Although we have not discovered the explanation for the discrepancy between cell-attached and excised patch data, we speculate that the channels recognized on cell account for the amiloride-sensitive Na+ conductance of the apical membrane, whereas the excision process alters the properties of the Na(+)-permeable channels and/or activate new channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1993.265.4.C1050 | DOI Listing |
Nat Commun
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.
Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.
View Article and Find Full Text PDFAcid-sensing ion channels (ASICs) are typically activated by acidic environments and contribute to nociception and synaptic plasticity. ASIC1a is the most abundant subunit in the central nervous system and forms homomeric channels permeable to Na and Ca , making it a compelling therapeutic target for acidotic pathologies including stroke and traumatic brain injury. However, a complete conformational library of human ASIC1a in its various functional states has yet to be described.
View Article and Find Full Text PDFFront Physiol
December 2024
Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.
View Article and Find Full Text PDFJ Gen Physiol
January 2025
Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
Cardiac ischemia followed by reperfusion results in cardiac cell death, which has been attributed to an increase of mitochondrial Ca2+ concentration, resulting in activation of the mitochondrial permeability transition pore (PTP). Evaluating this hypothesis requires understanding of the mechanisms responsible for control of mitochondrial Ca2+ in physiological conditions and how they are altered during both ischemia and reperfusion. Ca2+ influx is thought to occur through the mitochondrial Ca2+ uniporter (MCU).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!