Sexual (MAT a/alpha) and asexual (MAT a/a) strains of the yeast Saccharomyces cerevisiae, which are completely isogenic except at the MAT locus, were compared in their response to ultraviolet radiation. The effects of UV on survival, mitotic intragenic recombination, photoreactivation, and transformation efficiency with UV-irradiated plasmid DNA were examined. The sexual strain had enhanced survival and higher rates of mitotic intragenic recombination compared with the asexual strain. Exposure to visible light subsequent to irradiation increased the survival of both sexual and asexual strains, and decreased their rates of mitotic intragenic recombination. Similar results were obtained by Haladus and Zuk (1980) in their examination of sexual strains homozygous for rad6-1, and wild-type sexuals. Our sexual strain was also consistently more proficient at transforming plasmid DNA, whether that DNA had been irradiated or not. When pre-irradiated with 25 J/m2 of UV, MAT a/alpha cells transformed more efficiently than MAT a/a cells. When subsequently exposed to light, the ability of these pre-irradiated cells to transform decreased for both strains with increasing irradiation of the plasmid. A smaller decrease in transformation efficiency occurred when cells of both strains were kept in the dark. When pre-irradiated with 100 J/m2, the MAT a/alpha cells showed a 2-fold increase in their transformation efficiency of both irradiated and unirradiated plasmids by up to 2-fold, a phenomenon not seen in the MAT a/a cells even when pre-irradiated with much higher doses of UV. This increase in transformation efficiency was not, however, seen in the MAT a/alpha cells when they were exposed to visible light after UV irradiation. These results suggest that cells with the MAT a/alpha genotype have a UV-inducible system that increases the efficiency of transformation in the absence of visible light. This increase in transformation is not an induced increase in the repair of plasmid DNA, but rather an increase in the ability of pre-irradiated MAT a/alpha cells to take up exogenous DNA. MAT a/a cells do not appear to have a similarly inducible system. To the best of our knowledge, this phenomenon has not been previously reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0027-5107(93)90164-bDOI Listing

Publication Analysis

Top Keywords

mat a/alpha
24
mat a/a
16
transformation efficiency
16
a/alpha cells
16
mitotic intragenic
12
intragenic recombination
12
plasmid dna
12
visible light
12
a/a cells
12
increase transformation
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!