The cytotoxic T-lymphocyte (CTL) response can be crucial for efficient immunological control of intracellular pathogens and the MHC class I-restricted CTL have a major role to play in this process. They recognize complexes associating antigen-derived peptides with MHC class I molecules expressed on infected target cells. The characterization of these antigenic peptides is thus a key issue for developing vaccines efficient in inducing specific CTL. Recently, by sequencing the whole set of self-peptides eluted from a given MHC class I molecule, Falk and colleagues have found that they have a homogeneous 8-10 residue length and contain allele-specific peptidic motifs with two conservative dominant anchor residues. The existence of consensus motifs opens the way for a strategy to predict the MHC class I-restricted T-cell epitopes and here we discuss such an approach using hen egg lysozyme (HEL) as an antigenic model. Two HEL peptides corresponding to allele-specific motifs were found, HEL(49-56) and HEL(70-78) peptides, which can associate with MHC class I H-2Kb and H-2Db molecules, respectively. The HEL peptide HEL(70-78) was found to be able to induce HEL-specific CTL in H-2b mice also. Moreover, using an empiricial approach, we have also characterized the N-terminal HEL(1-17) peptide as an immunodominant antigenic peptide in the H-2k haplotype. This peptide presented by H-2Kk molecules neither contained the corresponding allele-specific binding motif nor fitted the expected 8-10 residue length.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0264-410x(93)90389-fDOI Listing

Publication Analysis

Top Keywords

mhc class
24
class i-restricted
12
antigenic peptides
8
peptides mhc
8
8-10 residue
8
corresponding allele-specific
8
mhc
6
class
6
peptides
5
predict antigenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!