The effect of free fatty acids (FFA) and non-enzymatic glycation on the binding kinetics of dansylsarcosine (DS) to human serum albumin (HSA) was studied using the stopped-flow technique. The influence of FFA on the binding parameters of 25% glycated HSA depended on the type of fatty acid. The addition of stearic, oleic and linoleic acids in a concentration of 0.3 mmol/l showed no inhibitory effects on the association rate constant (k2) value for DS binding to 25% glycated HSA (k2 without FFA: 385 +/- 10 s-1, k2 with FFA > or = 385 +/- 10 s-1). In contrast, shorter chain fatty acids (hexanoic, octanoic, decanoic, lauric and myristic acids) showed marked inhibitory effects for 0.3 mmol/l FFA (k2 range: 233 +/- 32 to 69 +/- 5 s-1) and for 0.6 mmol/l FFA (k2 range: 125 +/- 3 to 20 +/- 4 s-1). The association rate constant (k2) as well as the affinity constant (KA) of DS were markedly affected by glycation: k2 was 686 +/- 61 s-1 for 7% glycated HSA, 385 +/- 10 s-1 for 25% glycated HSA and 209 +/- 12 s-1 for 50% glycated HSA. KA decreased from 6.1 +/- 2.9 x 10(5) M-1 for 7% glycated HSA, to 5.1 +/- 0.1 x 10(5) M-1 for 25% glycated HSA and to 1.3 +/- 0.6 x 10(5) M-1 for 50% glycated HSA.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source

Publication Analysis

Top Keywords

glycated hsa
28
+/- s-1
28
25% glycated
16
fatty acids
12
+/-
12
385 +/-
12
+/- 105
12
105 m-1
12
glycated
9
free fatty
8

Similar Publications

Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.

Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.

View Article and Find Full Text PDF

Glycation and aggregation of proteins have garnered more interest in recent years. Glycation leads to the formation of protein aggregates and advanced glycation ends (AGEs) that play crucial roles within several pathological conditions. The objective of our study is to gain a deeper understanding of the formation of AGEs and aggregates of human serum albumin (HSA) in the presence of methylglyoxal and the protective effects of the phytochemical berberine.

View Article and Find Full Text PDF

Advanced glycation end-products (AGEs) are products of a non-enzymatic reaction between amino acids and reducing sugars. Glycated human serum albumin (HSA) increases in diabetics as a consequence of elevated blood glucose levels and glycating metabolites like methylglyoxal (MGO). The impact of different types of glycation on the immunomodulatory properties of HSA is poorly understood and is studied here.

View Article and Find Full Text PDF

Designed and synthesized novel tripeptides targeting diabetes and its related pathologies.

Eur J Med Chem

February 2025

Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India. Electronic address:

In diabetes and its associated pathologies, glycation, α-amylase, and α-glucosidase play crucial roles. This study introduces a novel tripeptide, RWW, designed to target glycation and key enzymes in diabetes management. Using in silico methods, RWW was optimized to interact with the glycation-prone Human serum albumin (HSA) sites, as well as inhibit α-amylase and α-glucosidase.

View Article and Find Full Text PDF
Article Synopsis
  • Controlled glycation of proteins can lead to harmful compounds called AGEs, especially when blood glucose levels are high, prompting research into natural protective agents like ginger extract.
  • In experiments, human serum albumin (HSA) was treated with glucose alone or with ginger extract, revealing ginger's ability to inhibit glycation and reduce harmful modifications to the protein over ten weeks.
  • The study concluded that ginger extract has antioxidant properties and can prevent the biochemical and structural changes associated with glycation in HSA, suggesting its potential use in managing health issues related to diabetes and other diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!