Identification of O-phosphorylated amino acids within the primary structure of regulatory proteins is important in understanding the mechanisms by which their functions are regulated. In many cases radioactive labeling with [32P]phosphate is tedious or sometimes impossible. Therefore, we have established a series of new non-radioactive methods that permit the localization of phosphoserine, phosphothreonine, and phosphotyrosine. After partial hydrolysis of a phosphopeptide or phosphoprotein, phosphoserine, phosphothreonine, or phosphotyrosine are determined by capillary electrophoresis as their dabsyl-derivatives. Chemical modification transforms phosphoserine or phosphothreonine to S-ethyl-cysteine or beta-methyl-S-ethyl-cysteine, respectively, allowing their localization during sequence analysis. We apply solid-phase sequencing to overcome the limitations of the gas-phase sequenator in the case of phosphotyrosine-containing peptides. Liquid chromatography on-line connected to an electrospray mass spectrometer is a powerful new method of increasing importance in the protein chemistry field. It is especially well suited for identification of phosphoserine- or phosphothreonine-containing peptides in a proteolytic digest of a phosphoprotein. In this article we will describe how to work with these new methods practically.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fasebj.7.9.7687226DOI Listing

Publication Analysis

Top Keywords

phosphoserine phosphothreonine
12
amino acids
8
phosphothreonine phosphotyrosine
8
strategies nonradioactive
4
nonradioactive methods
4
methods localization
4
localization phosphorylated
4
phosphorylated amino
4
acids proteins
4
proteins identification
4

Similar Publications

GPSD: a hybrid learning framework for the prediction of phosphatase-specific dephosphorylation sites.

Brief Bioinform

November 2024

Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.

Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.

View Article and Find Full Text PDF

Human Snk is an evolutionarily conserved serine/threonine kinase essential for the maintenance of endocrine stability. The protein consists of a N-terminal catalytic domain and a C-terminal polo-box domain (PBD) that determines subcellular localization and substrate specificity. Here, an integrated strategy is described to explore the vast structural diversity space of Snk PBD-binding phosphopeptides at a molecular level using machine learning modeling, annealing optimization, dynamics simulation, and energetics rescoring, focusing on the recognition specificity and motif preference of the Snk PBD domain.

View Article and Find Full Text PDF

Emerging Functions of Protein Tyrosine Phosphatases in Plants.

Int J Mol Sci

November 2024

Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.

Reversible protein phosphorylation, known as the "switch" of the cell, is controlled by protein kinases (PKs) and protein phosphatases (PPs). Based on substrate specificity, PPs are classified into protein serine/threonine phosphatases and protein tyrosine phosphatases (PTPs). PTPs can dephosphorylate phosphotyrosine and phosphoserine/phosphothreonine.

View Article and Find Full Text PDF

14-3-3s constitute a group of proteins belonging to the phosphoserine/phosphothreonine family that are involved in the regulation of several physiological pathways by interacting with several client proteins. All the eukaryotic cells are known to possess 14-3-3 isoforms. In addition, 14-3-3s isolated from different eukaryotic cells share high sequence homology with each other.

View Article and Find Full Text PDF

Phosphorylation of disordered proteins tunes local and global intramolecular interactions.

Biophys J

December 2024

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri. Electronic address:

Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!