H69AR is a multidrug resistant small cell lung cancer (SCLC) cell line that does not overexpress P-glycoprotein, the plasma membrane drug efflux pump usually associated with this type of resistance. Monoclonal antibodies (MAbs) were previously raised against H69AR cells, and three of these MAbs, 2.54, 3.50, and 3.186, cross-reacted with peripheral blood mononuclear cells. T cells (CD3+), B cells (CD19+), NK cells (CD16+) and monocytes (CD14+) expressed each of the three antigens, but to differing degrees. Immunoprecipitation and partial proteolytic mapping experiments demonstrated that the antigens detected by MAbs 2.54 and 3.186 are identical in H69AR cells and PBMCs. SCLC cells are known to express many hematopoietic antigens; however, this is the first report of SCLC multidrug resistance-associated antigens being expressed on hematopoietic cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cells
9
peripheral blood
8
blood mononuclear
8
mononuclear cells
8
cells express
8
small cell
8
cell lung
8
lung cancer
8
h69ar cells
8
mabs 254
8

Similar Publications

To explore the antioxidant activity of enzymatic hydrolysates of from Dalian and preliminarily elucidate their mechanisms of action both and . Samples were hydrolysed using alcalase, protamex, and neutrase. 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays showed that the alcalase hydrolysate had the highest antioxidant activity, with IC values of 4.

View Article and Find Full Text PDF

Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.

Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.

View Article and Find Full Text PDF

Aims: We develop and evaluate copper-based metal-organic frameworks (Cu-MOFs) incorporating cromolyn as a linker to enhance structural stability, drug delivery efficiency, and therapeutic potential, particularly for breast cancer treatment.

Materials & Methods: Two Cu-MOF formulations were synthesized: Cu-MOFs-BDC-DOX (using terephthalic acid) and Cu-MOFs-CROMO-DOX (using cromolyn as a linker). Characterization was performed using SEM/TEM for morphology, and FTIR, XRD, and TGA to confirm structural integrity.

View Article and Find Full Text PDF

Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.

View Article and Find Full Text PDF

Background: Conventional post-stroke edema management strategies are limitedly successful as in multiple cases of hemorrhagic transformation is being reported. Clinically, acute-ischemic-stroke (AIS) intervention by endovascular mesenchymal stem cells (MSCs) have shown benefits by altering various signaling pathways. Our previous studies have reported that intra-arterial administration of 1*10 MSCs (IA-MSCs) were beneficial in alleviating post-stroke edema by modulating PKCδ/MMP9/AQP4 axis and helpful in preserving the integrity of blood-brain-barrier (BBB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!