Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies in our laboratory have shown that CryIC, a lepidopteran-specific toxin from Bacillus thuringiensis, triggers calcium and chloride channel activity in SF-9 cells (Spodoptera frugiperda, fall armyworm). Chloride currents were also observed in SF-9 membrane patches upon addition of CryIC toxin to the cytoplasmic side of the membrane. In the present study the ability of activated CryIC toxin to form channels was investigated in a receptor-free, artificial phospholipid membrane system. We demonstrate that this toxin can partition in planar lipid bilayers and form ion-selective channels with a large range of conductances. These channels display complex activity patterns, often possess subconducting states and are selective to either anions or cations. These properties appeared to be pH dependent. At pH 9.5, cation-selective channels of 100 to 200 pS were most frequently observed. Among the channels recorded at pH 6.0, a 25-35 pS anion-selective channel was often seen at pH 6.0, with permeation and kinetic properties similar to those of the channels previously observed in cultured lepidopteran cells under comparable pH environment and for the same CryIC toxin doses. We conclude that insertion of CryIC toxin in SF-9 cell native membranes and in artificial planar phospholipid bilayers may result from an identical lipid-protein interaction mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00233051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!