The induction of genes of host cells stimulated by microbial products such as endotoxin and the tolerance of cells to endotoxin excitation play critical roles in the pathogenesis of microbial-induced acute disseminated inflammation with multiorgan failure (the sepsis syndrome). One gene that is induced in phagocytic cells by endotoxin and that appears to play an essential role in the pathogenesis of the sepsis syndrome is IL-1 beta. We report here that blood neutrophils (PMN) of patients with the sepsis syndrome (sepsis PMN) are consistently tolerant to endotoxin-induced expression of the IL-1 beta gene, as determined by decreased synthesis of the IL-1 beta protein and reductions in IL-1 beta mRNA. This down-regulation of the IL-1 beta gene in sepsis PMN occurs concomitant with an upregulation in the constitutive expression of the type 2 IL-1 receptor (IL-1R2). These phenotypic changes do not persist in PMN of patients recovering from the sepsis syndrome. Tolerance has stimulus and response specificity since sepsis PMN tolerant to endotoxin can respond normally to Staphylococcus aureus stimulation of IL-1 beta production and they normally secrete elastase. Uninfected patients with severe trauma or shock from causes are not tolerant to endotoxin and tolerance is not limited to patients infected with Gram-negative bacteria. The mechanism responsible for tolerance involves pretranslational events and is not due to loss of the CD14 surface protein, a receptor required for endotoxin induction of IL-1 beta in PMN. The physiological significance of the tolerance to endotoxin and increased expression of IL-1R2 on sepsis PMN is unknown, but may represent an attempt by the host to protect itself from the deleterious effects of disseminated inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC288037 | PMC |
http://dx.doi.org/10.1172/JCI116306 | DOI Listing |
PLoS One
January 2025
Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh.
Background: Epidemiological research suggests that altered levels of cytokine are associated with pathophysiology and the development of major depressive disorder (MDD). Based on earlier study, IL-1β rs16944 and rs1143627 polymorphisms may increase the risk of depression. Here, we aimed to evaluate the correlation between these polymorphisms and MDD susceptibility among the population in Bangladesh.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong, 510630, China.
Osteoarthritis (OA) is increasingly recognized as a whole-organ disease predominantly affecting the elderly, characterized by typical alterations in subchondral bone and cartilage, along with recurrent synovial inflammation. Despite the availability of various therapeutics and medications, a complete resolution of OA remains elusive. In this study, novel functional hydrogels are developed by integrating natural bioactive molecules for OA treatment.
View Article and Find Full Text PDFAnn Neurosci
October 2024
Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India.
Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.
Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.
Front Immunol
January 2025
Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway.
Introduction: CD38, a regulator of intracellular calcium signalling, is highly expressed in immune cells. Mice lacking CD38 are very susceptible to acute bacterial infections, implicating CD38 in innate immune responses. The effects of CD38 inhibition on NLRP3 inflammasome activation in human primary monocytes and monocyte-derived macrophages have not been investigated.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye.
Purpose: The inflammatory response in animal models of chronic obstructive pulmonary disease (COPD) is activated by the NLR-family-pyrin-domain-containing-3 (NLRP3) inflammasome pathway, which is also known to play a role in obesity-related inflammation. The NLRP3/caspase-1/interleukin (IL)-1β pathway might be involved in the progression of COPD with increasing body mass index. To our knowledge, no previous studies have explored the role of NLRP3 inflammasome markers in linking COPD and obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!