The binding of antibody to antigen or T-cell receptor to major histocompatibility complex-peptide complex requires that portions of the two structures have complementary shapes that can closely approach each other. The question that we address here is how large should the complementary regions on the two structures be. The interacting regions are by necessity roughly the same size. To estimate the size (number of contact residues) of an optimal receptor combining region, we assume that the immune system over evolutionary time has been presented with a large random set of foreign molecules that occur on common pathogens, which it must recognize, and a smaller random set of self-antigens to which it must fail to respond. Evolutionarily, the receptors and the molecular groups that the immune system recognizes as epitopes are imagined to have coevolved to maximize the probability that this task is performed. The probability of a receptor matching a random antigen is estimated from this condition. Using a simple model for receptor-ligand interaction, we estimate that the optimal size binding region on immunoglobulin or T-cell receptors will contain about 15 contact residues, in agreement with experimental observation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC45945 | PMC |
http://dx.doi.org/10.1073/pnas.90.5.1691 | DOI Listing |
Clin Transl Oncol
January 2025
Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden.
View Article and Find Full Text PDFNat Immunol
January 2025
Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.
T cells recognize neoepitope peptide-major histocompatibility complex class I on cancer cells. The strength (or avidity) of the T cell receptor-peptide-major histocompatibility complex class I interaction is a critical variable in immune control of cancers. Here, we analyze neoepitope-specific CD8 cells of distinct avidities and show that low-avidity T cells are the sole mediators of cancer control in mice and are solely responsive to checkpoint blockade in mice and humans.
View Article and Find Full Text PDFCombined immune checkpoint blockade (ICB) and chemoradiation (CRT) is approved in patients with locally advanced cervical cancer (LACC) but optimal sequencing of CRT and ICB is unknown. NRG-GY017 (NCT03738228) was a randomized phase I trial of atezolizumab (anti-PD-L1) neoadjuvant and concurrent with CRT (Arm A) vs. concurrent with CRT (Arm B) in patients with high-risk node-positive LACC.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
January 2025
Department of Hematology, Beijing Anzhen Hospital, Capital Medical University, Beijing100029, China.
PLoS One
January 2025
AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.
T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!