The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1801263PMC

Publication Analysis

Top Keywords

trinucleotide repeat
20
repeat expansions
16
sca1 mjd
12
mjd trinucleotide
12
spinocerebellar ataxia
8
ataxia type
8
machado-joseph disease
8
adult-onset ataxia
8
311 families
8
autosomal dominant
8

Similar Publications

Objective: The ghost crab Ocypode stimpsoni (Decapoda) is designated as a protected marine species in Korea due to its declining population. In this study, we successfully identified 17 microsatellite markers for O. stimpsoni through next-generation sequencing.

View Article and Find Full Text PDF

Genome-wide association study of anterior uveitis.

Br J Ophthalmol

December 2024

Department of Ophthalmology and Medical Research Center, Oulu University Hospital; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.

Background/aims: The purpose of this study is to define genetic factors associated with anterior uveitis through genome-wide association study (GWAS).

Methods: In this GWAS meta-analysis, we combined data from the FinnGen, Estonian Biobank and UK Biobank with a total of 12 205 anterior uveitis cases and 917 145 controls. We performed a phenome-wide association study (PheWAS) to investigate associations across phenotypes and traits.

View Article and Find Full Text PDF

Generation of an induced pluripotent stem cell (iPSC) line (INNDSUi007-A) from a patient with Kennedy disease.

Stem Cell Res

December 2024

Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Jinan, Shandong, China. Electronic address:

Abnormal trinucleotide CAG repeat expansions in exon 1 of the Androgen Receptor (AR) gene has been identified as the cause of Kennedy disease (KD). We generated and characterized a human induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMC) of a patient with genetically confirmed KD. The pluripotency of these iPSCs was verified by the expression of several pluripotency markers at both RNA and protein levels, as well as their capability to differentiate into all three germ layers.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF

Fragile X Syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the FMR1 gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the FMR1 gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!