Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this work was to assess whether perinatal hyperammonemia impairs the function of NMDA receptors and whether this impairment affords protection against acute ammonia toxicity and glutamate and NMDA neurotoxicity. Rats were exposed to ammonia during the prenatal and lactation periods by feeding the female rats an ammonium-containing diet since day 1 of pregnancy. After weaning (at postnatal day 21), the pups were fed a normal diet with no ammonia added. This treatment resulted in a marked decrease of the growth rate of the animals, which was maintained even 1 month after normalization of ammonia levels. Rats exposed to ammonia were more resistant than controls to acute ammonia toxicity 13 days after feeding a normal diet but not at 3 months. Primary cultures of cerebellar neurons from hyperammonemic rats showed decreased binding of [3H]MK-801 and were remarkably more resistant than controls to glutamate and NMDA toxicities. Also, the increase in aspartate aminotransferase activity induced by low concentrations of NMDA was not produced in such cultures. These results indicate that exposure to ammonia during the prenatal and lactation periods results in long-lasting impairment of NMDA receptor function. This would be the reason for the delayed protection afforded by exposure to low ammonia levels against acute ammonia toxicity in animals and against glutamate and NMDA toxicity in neuronal cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00005072-199509000-00005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!