A cDNA clone encoding a taste-modifying protein, miraculin (MIR), was isolated and sequenced. The encoded precursor to MIR was composed of 220 amino acid (aa) residues, including a possible signal sequence of 29 aa. Northern blot analysis showed that the mRNA encoding MIR was already expressed in fruits of Richadella dulcifica at 3 weeks after pollination and was present specifically in the pulp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-1119(95)00198-f | DOI Listing |
BMC Genomics
May 2021
Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
Background: Curculigo latifolia is a perennial plant endogenous to Southeast Asia whose fruits contain the taste-modifying protein neoculin, which binds to sweet receptors and makes sour fruits taste sweet. Although similar to snowdrop (Galanthus nivalis) agglutinin (GNA), which contains mannose-binding sites in its sequence and 3D structure, neoculin lacks such sites and has no lectin activity. Whether the fruits of C.
View Article and Find Full Text PDFTransgenic Res
December 2011
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage.
View Article and Find Full Text PDFPlant Cell Rep
January 2011
Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.
In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato.
View Article and Find Full Text PDFPlanta
January 2011
Laboratório de Genoma Funcional Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin).
View Article and Find Full Text PDFAppl Environ Microbiol
May 2006
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Neoculin (NCL), a protein with sweetness approximately 500-fold that of sugar, can be utilized as a nonglycemic sweetener. It also has taste-modifying activity to convert sourness to sweetness. NCL is a heterodimer composed of an N-glycosylated acidic subunit (NAS) and a basic subunit (NBS), which are conjugated by disulfide bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!