Photoaffinity labeling with bovine rhodopsin using a retinal with a fixed 11-cis-ene cross-linked exclusively to Trp-265/Leu-266 in helix F, showing that the beta-ionone C-3 is close to helix F. Moreover, since these labeled amino acids are in the middle of helix F, while the Schiff-base linkage to Lys-296 at the other terminus of the chromophore is also in the middle of helix G, the chromophore lies horizontally near the center of the lipid bilayer. In bacteriorhodopsin, photoaffinity studies using a retinal with a C-10 tritiated phenylazide appended through a 13 A spacer cross-linked to Arg-175/Asn-176 on the cytoplasmic side of helix F; this indicates that 9-Me points toward the extracellular space. This result agrees with our earlier studies with 9-sulfate analogs but is opposite to that deduced by biophysical measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0301-4622(95)00010-uDOI Listing

Publication Analysis

Top Keywords

photoaffinity labeling
8
bacteriorhodopsin photoaffinity
8
middle helix
8
helix
5
labeling rhodopsin
4
rhodopsin bacteriorhodopsin
4
labeling bovine
4
bovine rhodopsin
4
rhodopsin retinal
4
retinal fixed
4

Similar Publications

Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy.

Pharmaceuticals (Basel)

December 2024

Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi "Link Campus University", Via del Casale di S. Pio V 44, I-00165 Rome, Italy.

, , and parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities.

View Article and Find Full Text PDF

Proteomic Profiling of Potential E6AP Substrates via Ubiquitin-based Photo-Crosslinking Assisted Affinity Enrichment.

Chembiochem

January 2025

Departments of Biology and Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78467, Konstanz, Germany.

The ubiquitin (Ub) ligase E6AP, encoded by the UBE3A gene, has been causally associated with human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited, presumably because at least some of these interactions are rather transient, a phenomenon observed for many enzyme-substrate interactions. Here, we introduce a novel approach to trap such potential transient interactions by combining a stable E6AP-Ub conjugate mimicking the active state of this enzyme with photo-crosslinking (PCL) followed by affinity enrichment coupled to mass spectrometry (AE-MS).

View Article and Find Full Text PDF

Development of nucleus-targeted histone-tail-based photoaffinity probes to profile the epigenetic interactome in native cells.

Nat Commun

January 2025

School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory of Animal Source of Anhui Province, Hefei University of Technology, Hefei, 230009, China.

Dissection of the physiological interactomes of histone post-translational modifications (hPTMs) is crucial for understanding epigenetic regulatory pathways. Peptide- or protein-based histone photoaffinity tools expanded the ability to probe the epigenetic interactome, but in situ profiling in native cells remains challenging. Here, we develop a nucleus-targeting histone-tail-based photoaffinity probe capable of profiling the hPTM-mediated interactomes in native cells, by integrating cell-permeable and nuclear localization peptide modules into an hPTM peptide equipped with a photoreactive moiety.

View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!