The purified lipase from Candida deformans was shown to catalyse ester production in aqueous media by esterification of free fatty acids but not by alcoholysis. As the enzyme also catalysed ester hydrolysis, the influence of various physico-chemical factors on ester hydrolysis and synthesis was studied and compared. Substrate specificities were also studied. Both activities had the same pH and temperature optima, and did not require a metal cofactor. Tyrosine appeared to be one of the amino acids of the enzyme required by both catalytic activities, whereas serine-reactive reagents inhibited synthesis only. The highest synthesis and hydrolysis activities were obtained with mono-, di- and tri-unsaturated fatty acids containing a [cis] delta-9 unsaturation and 16 to 18 carbon atoms. Only esters of primary alcohols were hydrolysed and synthesised. For alcohols ranging from methanol to butanol, synthesis activity increased with the length of the alcohol whereas hydrolysis activity of the corresponding esters decreased. The presence of alcohol inhibited hydrolysis. An optimum concentration was found for each primary alcohol at which ester synthesis was maximum and hydrolysis was low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0168-1656(95)00060-4 | DOI Listing |
J Org Chem
January 2025
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning 530006, China.
A regioselective [3 + 2] annulation of β,γ-alkynyl-α-ketimino esters with 1,3-dicarbonyls is disclosed. A series of -selective dihydrofurans bearing an exocyclic double bond and a quaternary carbon center are accessed without the usage of base. Control and deuterium-labeling experiments have been investigated to probe into the reaction mechanism.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, 6200 MD Maastricht, The Netherlands.
As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.
View Article and Find Full Text PDFCurr Alzheimer Res
January 2025
Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism.
View Article and Find Full Text PDFChemistry
January 2025
Karlsruhe Institute of Technology, Institute for biological interfaces 1 (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, GERMANY.
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.
The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!