The molecular basis of Turcot's syndrome.

N Engl J Med

Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205-2196.

Published: March 1995

Background: Turcot's syndrome is characterized clinically by the concurrence of a primary brain tumor and multiple colorectal adenomas. We attempted to define the syndrome at the molecular level.

Methods: Fourteen families with Turcot's syndrome identified in two registries and the family originally described by Turcot and colleagues were studied. Germ-line mutations in the adenomatous polyposis coli (APC) gene characteristic of familial adenomatous polyposis were evaluated, as well as DNA replication errors and germline mutations in nucleotide mismatch-repair genes characteristic of hereditary nonpolyposis colorectal cancer. In addition, a formal risk analysis for brain tumors in familial adenomatous polyposis was performed with a registry data base.

Results: Genetic abnormalities were identified in 13 of the 14 registry families. Germ-line APC mutations were detected in 10. The predominant brain tumor in these 10 families was medulloblastoma (11 of 14 patients, or 79 percent), and the relative risk of cerebellar medulloblastoma in patients with familial adenomatous polyposis was 92 times that in the general population (95 percent confidence interval, 29 to 269; P < 0.001). In contrast, the type of brain tumor in the other four families was glioblastoma multiforme. The glioblastomas and colorectal tumors in three of these families and in the original family studied by Turcot had replication errors characteristic of hereditary nonpolyposis colorectal cancer. In addition, germ-line mutations in the mismatch-repair genes hMLH1 or hPMS2 were found in two families.

Conclusions: The association between brain tumors and multiple colorectal adenomas can result from two distinct types of germ-line defects: mutation of the APC gene or mutation of a mismatch-repair gene. Molecular diagnosis may contribute to the appropriate care of affected patients.

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJM199503303321302DOI Listing

Publication Analysis

Top Keywords

adenomatous polyposis
16
turcot's syndrome
12
brain tumor
12
familial adenomatous
12
multiple colorectal
8
colorectal adenomas
8
germ-line mutations
8
apc gene
8
replication errors
8
mismatch-repair genes
8

Similar Publications

Single-cell RNA sequencing and machine learning provide candidate drugs against drug-tolerant persister cells in colorectal cancer.

Biochim Biophys Acta Mol Basis Dis

January 2025

Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. Electronic address:

Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging.

View Article and Find Full Text PDF

Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary disease characterized by the progressive development of multiple adenomatous polyps along the colon. The majority of individuals develop colorectal cancer by the age of 40 within the evolutionary course of the disease. For this reason, screening family members is essential to enable identification, surveillance, and appropriate intervention.

View Article and Find Full Text PDF

Childhood cancer survival rates have improved, but survivors face an increased risk of second malignant neoplasms (SMNs), particularly thyroid cancer. This study examines the demographic, clinical, genetic, and treatment characteristics of childhood cancer survivors who developed thyroid cancer as a second or third malignancy, emphasizing the importance of long-term surveillance. A retrospective review was conducted for childhood cancer survivors treated between 1990 and 2018 who later developed thyroid cancer as a second or third malignancy.

View Article and Find Full Text PDF

Liquid biopsy methods have gained prominence as minimally invasive tools to improve cancer treatment outcomes. Circulating tumor cells (CTCs) offer valuable insights into both primary and metastatic lesions. However, validating the CTC test results requires confirmation that the detected cells originate from cancer tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!