Techniques for preparing catalytically active corrin complexes of cobalt with monofunctional e-carboxyl- and e-amino groups in a macroligand are suggested. Two methods of the covalent attachment of such Co-corrin complexes to the terminal 3'- and 5'-phosphate groups of oligodeoxyribonucleotides were studied: the introduction of the complex to the oligonucleotide after oligonucleotide synthesis in aqueous solution and in the course of automated solid-phase oligonucleotide synthesis. Introducing of the Co-corrin complex during solid-phase synthesis was more efficient. It was demonstrated that the oligonucleotide probe thus obtained was able to act as a nuclease in the presence of ascorbic acid, the location of the clearage sites being determined by the addressing oligonucleotide.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oligonucleotide synthesis
8
oligonucleotide
5
[cobalt-corrin oligonucleotide
4
oligonucleotide derivatives
4
derivatives reagents
4
reagents selective
4
selective cleavage
4
cleavage nucleic
4
nucleic acids]
4
acids] techniques
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Enhancing early breast cancer detection with APE1-triggered oligonucleotide probes and graphene oxide: The impact of variable AP site modification on sensitivity and specificity.

Talanta

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:

There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge.

View Article and Find Full Text PDF

The Role of microRNA-22 in Metabolism.

Int J Mol Sci

January 2025

Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark.

microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.

View Article and Find Full Text PDF

On-Chip DNA Assembly via Dielectrophoresis.

Micromachines (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University, Shanghai 200240, China.

On-chip gene synthesis has the potential to improve the synthesis throughput and reduce the cost exponentially. While there exist several microarray-based oligo synthesis technologies, on-chip gene assembly has yet to be demonstrated. This work introduces a novel on-chip DNA assembly method via dielectrophoresis (DEP) that can potentially be integrated with microarray-based oligo synthesis on the same chip.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!