Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glucocorticoids are efficient antiinflammatory agents, and their effects include transcriptional repression of several cytokines and adhesion molecules. Whereas glucocorticoids down-regulate the expression of genes relevant during inflammation, nuclear factor (NF)-kappa B/Rel proteins function as important positive regulators of these genes. The expression of intercellular adhesion molecule-1 (ICAM-1), which plays an essential role in recruitment and migration of leukocytes to sites of inflammation, is also down-regulated by glucocorticoids. We found that a functional NF-kappa B site in the ICAM-1 promoter, which can be activated by either 12-O-tetradecanoylphorbol-13-acetate or tumor necrosis factor-alpha (TNF alpha), is also the target for glucocorticoids. In this report we present evidence that the ligand-activated glucocorticoid receptor (GR) is able to repress RelA-mediated activation of the ICAM-1 NF-kappa B site. Conversely, transcriptional activation by GR via a glucocorticoid response element is specifically repressed by RelA, but not by other NF-kappa B/Rel family members. Mutational analysis of GR demonstrates that the DNA binding domain and the ligand binding domain are required for the functional repression of NF-kappa B activation. Despite the importance of the DNA binding domain, we found that the transcriptional repression of NF-kappa B, mediated by GR, is not caused by binding of GR to the ICAM-1 NF-kappa B element, but by a physical interaction between the GR and RelA protein. The repressive effect of GR on NF-kappa B-mediated activation was not shared by other steroid/thyroid receptors. Only the progesterone receptor, which belongs to the same subfamily as GR and which possesses high homology with GR, was able to repress NF-kappa B-mediated transcription. These studies highlight a possible molecular mechanism that can explain the antiinflammatory effects of glucocorticoid treatment during inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.9.4.7659084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!