Antidiabetic agents: a new class of reversible carnitine palmitoyltransferase I inhibitors.

J Med Chem

Diabetes Department, Sandoz Research Institute, Sandoz Pharmaceuticals Corporation, East Hanover, New Jersey 07936, USA.

Published: September 1995

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00018a003DOI Listing

Publication Analysis

Top Keywords

antidiabetic agents
4
agents class
4
class reversible
4
reversible carnitine
4
carnitine palmitoyltransferase
4
palmitoyltransferase inhibitors
4
antidiabetic
1
class
1
reversible
1
carnitine
1

Similar Publications

Background: The global prevalence of diabetes has been rising rapidly in recent years, leading to an increase in patients experiencing hyperglycemic crises like diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS). Patients with impaired renal function experience a delay in insulin clearance, complicating the adjustment of insulin dosing and elevating hypoglycemia risk. Accordingly, this study aims to evaluate the impact of renal function on the safety and efficacy of insulin use in patients with isolated DKA or combined DKA/HHS.

View Article and Find Full Text PDF

Background: Continuous glucose monitoring (CGM) improves glycemic control and quality of life. Data on glycemic indices and fear of hypoglycemia (FoH) in newly diagnosed T1DM patients are limited.

Aim: To assess the impact of initiating intermittently scanned CGM (isCGM) within 1-6 months of diagnosis on glycemic control and FoH in adults with T1DM.

View Article and Find Full Text PDF

Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications.

View Article and Find Full Text PDF

Investigating the hydrolysis of complex carbohydrates with salivary α-amylase.

Food Res Int

February 2025

Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark. Electronic address:

Currently, little is known about how complex carbohydrates (maltodextrins) with varying degrees of polymerisation (DP) and molecular branching interact with α-amylase in human saliva and the associated amounts and structures of generated reducing sugars. Therefore, this study aimed to investigate salivary α-amylase and the subsequent reducing sugars generated with complex carbohydrate stimuli. A secondary aim was to investigate reducing sugar generation and complex carbohydrate taste sensitivity.

View Article and Find Full Text PDF

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!