Up to now it has not been possible to reliably cross-calibrate dual-energy X-ray absorptiometry (DXA) densitometry equipment made by different manufacturers so that a measurement made on an individual subject can be expressed in the units used with a different type of machine. Manufacturers have adopted various procedures for edge detection and calibration, producing various normal ranges which are specific to each individual manufacturer's brand of machine. In this study we have used the recently described European Spine Phantom (ESP, prototype version), which contains three semi-anthropomorphic "vertebrae" of different densities made of stimulated cortical and trabecular bone, to calibrate a range of DXA densitometers and quantitative computed tomography (QCT) equipment used in the measurement of trabecular bone density of the lumbar vertebrae. Three brands of QCT equipment and three brands of DXA equipment were assessed. Repeat measurements were made to assess machine stability. With the large majority of machines which proved stable, mean values were obtained for the measured low, medium and high density vertebrae respectively. In the case of the QCT equipment these means were for the trabecular bone density, and in the case of the DXA equipment for vertebral body bone density in the posteroanterior projection. All DXA machines overestimated the projected area of the vertebral bodies by incorporating variable amounts of transverse process. In general, the QCT equipment gave measured values which were close to the specified values for trabecular density, but there were substantial differences from the specified values in the results provided by the three DXA brands. For the QCT and Norland DXA machines (posteroanterior view), the relationships between specified densities and observed densities were found to be linear, whereas for the other DXA equipment (posteroanterior view), slightly curvilinear, exponential fits were found to be necessary to fit the plots of observed versus specified densities. From these plots, individual calibration equations were derived for each machine studied. For optimal cross-calibration, it was found to be necessary to use an individual calibration equation for each machine. This study has shown that it is possible to cross-calibrate DXA as well as QCT equipment for the measurement of axial bone density. This will be of considerable benefit for large-scale epidemiological studies as well as for multi-site clinical studies depending on bone densitometry.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02106097DOI Listing

Publication Analysis

Top Keywords

qct equipment
20
bone density
16
trabecular bone
12
dxa equipment
12
dxa
9
equipment
9
spine phantom
8
machine study
8
equipment measurement
8
three brands
8

Similar Publications

Background Context: As lumbar degenerative diseases become more prevalent in an aging population, there is an increasing demand for surgical interventions, such as posterior lumbar interbody fusion (PLIF). However, cage subsidence (CS), observed in 23.9-54% of cases postoperatively, remains a significant complication.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on measuring beam alignment in medical linear accelerators, emphasizing the importance of analyzing focal spot positions to ensure accurate radiation delivery.
  • The newly developed Quality Control Tool (QCT) device facilitates simultaneous tests of light/radiation field coincidence and isocenter testing, enabling effective analysis of focal spots with specific software.
  • Results show that focal spot position varies with gantry angle, showcasing the QCT's capacity to accurately measure displacements and assess beam alignment without interference from the jaw collimator.
View Article and Find Full Text PDF

Long-Term Reproducibility of BMD-Measurements with Clinical QCT Using Simultaneous and Asynchronous Calibration Methods and Different Measurement and Reconstruction Protocols.

Calcif Tissue Int

November 2024

Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany.

Osteoporosis is underdiagnosed and undertreated. To improve timely fracture risk assessment optimized densitometry methods are required such as opportunistic spinal quantitative computed tomography (QCT). However, it is unclear how to best calibrate these scans and correct for potential scanner drift of QCT when used for monitoring bone mineral density (BMD) changes.

View Article and Find Full Text PDF

Background: Lung quantitative computed tomography (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways, using radiomultiomics, integrating qCT, multiomics and machine learning/artificial intelligence.

Methods: We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort.

View Article and Find Full Text PDF

HR-pQCT has become standard practice when quantifying volumetric BMD (vBMD) in vivo. Yet, it is only accessible to peripheral sites, with small fields of view and lengthy scanning times. This limits general applicability in clinical workflows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!