Microinjection into bovine zygotes was performed to evaluate the effects of the timing of injection during the phase of DNA replication on the subsequent in vitro development of embryos and expression of injected chicken beta-actin promoter-lac Z gene construct. The period of DNA replication of bovine zygotes, determined by 3H-thymidine incorporation, begins between 12 hr and 13 hr postinsemination (hpi) of in vitro matured oocytes, reaches a maximum from 17 hpi to 19 hpi, and is complete by 21-22 hpi. Aphidicolin, an inhibitor of DNA polymerase alpha, was used to synchronize the pronuclei and the zygote population. Treatment with aphidicolin at 9-18 hpi arrested DNA replication without affecting formation of the pronuclei or embryo development. Cycloheximide, an inhibitor of protein synthesis, was used for nucleocytoplasmic resynchronization of the aphidicolin-treated zygotes. Microinjection was performed at 15 (early), 18 (mid), and 21 (late S phase) hpi. Embryonic development was affected following each of the three microinjection times. The development of zygotes injected at 18 hpi was significantly higher (P < 0.01) after 5 days of culture than those injected at 15 hpi or 21 hpi. Expression of the marker gene was observed in the higher stage of development (> 16 cells) only in the zygotes injected at 18 hpi. At the earlier stages of development, the proportions of embryos showing expression of the foreign gene were the same for all microinjection times. In aphidicolin- and cycloheximide-treated zygotes, expression of the marker gene followed the same curve as development, i.e., expression was low when injected early or late and higher (P < 0.005) when injected in the middle of zygotic S phase. The ability of the embryos to survive microinjection and to express the marker gene as a function of hpi seems to be influenced mostly in the cytoplasm processing stage rather than the pronuclei processing stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.1080410209 | DOI Listing |
J Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.
Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.
View Article and Find Full Text PDFBiochem J
January 2025
The Sun Yat-Sen University, Guangzhou, China.
The N6-methyladenine (6mA) modification is an essential epigenetic marker and plays a crucial role in processes, such as DNA repair, replication, gene expression regulation, etc. YerA from Bacillus subtilis is considered a novel class of enzymes capable of catalyzing the deamination of 6mA to produce hypoxanthine. Despite the significance of this type of enzymes in bacterial self-defense systems and potential applications as a gene-editing tool, the substrate specificity, the catalytic mechanism and the physiological function of YerA are currently unclear due to the lack of structural information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!