D. farinae allergen has been modified with formaldehyde and its properties have been studied. This study has demonstrated that the formolation of D. farinae ticks allergen causes changes in isoelectric points of proteins and a shift of protein fraction to acidic pH values: 3.0-4.85; an insignificant decrease in the volume of gel filtration output on a column packed with Sephacryl S-300; a decrease in the esterase activity from 10.5 to 1.8 microM tosylarginine methyl ester/min. per mg of protein. As revealed with the use of microdot enzyme immunoassay, the modified allergen loses its capacity to bind with human specific IgE antibodies in vitro.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[the formaldehyde
4
formaldehyde modification
4
modification physicochemical
4
physicochemical properties
4
properties specific
4
specific activity
4
allergen
4
activity allergen
4
allergen dermatophagoides
4
dermatophagoides farinae
4

Similar Publications

Hyperalgesia is a condition marked by an abnormal increase in pain sensitivity, often occurring in response to tissue injury, inflammation, or prolonged exposure to certain medications. Inflammatory mediators, such as cytokines IL-1β, IL-6, and TNF-α, play a central role in this process, amplifying pain perception. Developing effective treatments that address the underlying mechanisms of hyperalgesia is an active field of research.

View Article and Find Full Text PDF

A Model H5N2 Vaccine Strain for Dual Protection Against H5N1 and H9N2 Avian Influenza Viruses.

Vaccines (Basel)

December 2024

Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.

Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.

View Article and Find Full Text PDF

Transition Metal-Mediated Preparation of Nitrogen-Doped Porous Carbon for Advanced Zinc-Ion Hybrid Capacitors.

Nanomaterials (Basel)

January 2025

Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.

View Article and Find Full Text PDF

This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).

View Article and Find Full Text PDF

Design and synthesis of Pt/TiO catalyst with abundant surface hydroxyl for formaldehyde oxidation.

J Hazard Mater

January 2025

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China. Electronic address:

Catalytic oxidation of formaldehyde (HCHO) is a highly effective method for indoor HCHO removal. However, many aspects of the catalytic mechanism remain unclear, making the optimization of catalysts largely empirical. Herein, we report a coupled experimental and computational study of Pt/TiO catalysts, with special focus on the functional roles of surface oxygen vacancies and hydroxyl groups in the catalytic oxidation of HCHO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!