The temperature-sensitive mutant p53 tsp53val135 (tsp53) displays a mutant phenotype at 38 degrees C, but assumes properties of a wild-type (wt) p53 at 32 degrees C. We analysed the cellular responses of two cell lines which ectopically overexpress tsp53, and dramatically differ in their responses to tsp53 expressed at 32 degrees C. Clone 6 (cl6) cells [precrisis rat embryo fibroblasts transformed by tsp53val135 and an activated ras oncogene at 38 degrees C (Michalovitz et al., 1990. Cell 62, 671-680) stop to grow and arrest mainly in the G1 phase of the cell cycle, whereas MethAp53ts cells [BALB/c mouse MethA tumor cells, transfected with the same tsp53 encoding vector as cl6 cells (Otto and Deppert, 1993. Oncogene 8, 2591-2603)] do not growth arrest at 32 degrees C. Both cell lines expressed similar amounts of tsp53, which was mainly cytoplasmic at 38 degrees C and mainly nuclear at 32 degrees C. At 32 degrees C, both cell lines contained similar amounts of waf1/cip1 mRNA. However, the amount of mdm2 mRNA in MethAp53ts cells was considerably higher compared to that in cl6 cells. The different transcriptional regulation of the mdm2-gene in cl6 and MethAp53ts cells at 32 degrees C indicated that the tsp53 proteins in these cells were functionally different. This assumption was supported by our finding that at 32 degrees C phosphorylation of the tsp53 in these cells was markedly different. We conclude that the cellular environment is an important determinant of p53 function.
Download full-text PDF |
Source |
---|
Medicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People's Republic of China.
Colorectal cancer (CRC) is one of the most common cancers worldwide and inflammation is believed to play an important role in CRC. In this study, we comprehensively analyzed the causal association between 91 circulating inflammatory cytokines and the risk of CRC using Mendelian randomization (MR). Based on genome-wide association study summary statistics, we examined the causal effects of 91 circulating inflammatory cytokines on CRC.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
Background: In patients with advanced hepatocellular carcinoma (HCC) following sorafenib failure, regorafenib has been used as an initial second-line drug. It is unclear the real efficacy and safety of sorafenib-regorafenib sequential therapy compared to placebo or other treatment (cabozantinib or nivolumab or placebo) in advanced HCC.
Methods: Four electronic databases (PubMed, Embase, Web of Science, and Ovid) were systematically searched for eligible articles from their inception to July, 2024.
Blood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!