Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists.

J Med Chem

Research and Development Department, CIBA-GEIGY AG, Basel, Switzerland.

Published: August 1995

The antispastic agent and muscle relaxant baclofen 1 is a potent and selective agonist for bicuculline-insensitive GABAB receptors. For many years efforts to obtain superior GABAB agonists were unsuccessful. We describe the syntheses and biological properties of two new series of GABAB agonists, the best compounds of which are more potent than baclofen in vitro and in vivo. They were obtained by replacing the carboxylic acid group of GABA or baclofen derivatives with either the phosphinic acid or the methylphosphinic acid residue. Surprisingly, ethyl- and higher alkylphosphinic acid derivatives of GABA yielded novel GABAB antagonists, which are described in part 2 of this series. Structure-activity relationships of the novel GABAB agonists are discussed with respect to their affinities to GABAB receptors as well as to their effects in many functional tests in vitro and in vivo providing new muscle relaxant drugs with significantly improved side effect profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00017a015DOI Listing

Publication Analysis

Top Keywords

gabab agonists
16
phosphinic acid
8
potent selective
8
muscle relaxant
8
gabab receptors
8
vitro vivo
8
novel gabab
8
gabab
7
acid analogues
4
analogues gaba
4

Similar Publications

Infantile Spasms in Pediatric Down Syndrome: Potential Mechanisms Driving Therapeutic Considerations.

Children (Basel)

December 2024

Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.

View Article and Find Full Text PDF

Metabotropic GABA Receptor Activation Induced by G Protein Coupling.

J Am Chem Soc

January 2025

Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.

G protein-coupled receptors (GPCRs) play central roles in regulating cellular responses through heterotrimeric G proteins (GP). Extensive studies have elucidated the complex cellular signaling mediated by GPCRs that accompany dynamic conformational changes upon activation. However, there has been less focus on the role of the GP on the activation process, particularly for class C GPCRs that function as obligate dimers.

View Article and Find Full Text PDF

In narcolepsy with cataplexy, sodium oxybate and the recently FDA-approved drug pitolisant are preferred medications. Armodafinil, a longer-acting, non-amphetamine stimulant, is often used in patients who have narcolepsy without cataplexy. It enhances alertness by increasing presynaptic dopamine transmission presynaptically, amplifying serotonin in the cerebral cortex, activating glutamatergic circuits, which may contribute to its vigilance-enhancing properties, and stimulating orexin activity.

View Article and Find Full Text PDF

Background: The γ-aminobutyric acid-B (GABA) receptor is a promising target for the development of new medications to treat alcohol use disorder (AUD). The GABA agonist baclofen has been reported to reduce alcohol consumption but is associated with some undesirable side effects, including sedation. ASP8062 is a novel compound that acts as a positive allosteric modulator at the GABA receptor and may be more tolerable than baclofen.

View Article and Find Full Text PDF

GABA Receptors and K7 Channels as Targets for GABAergic Regulation of Acetylcholine Release in Frog Neuromuscular Junction.

Neurochem Res

November 2024

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.

Article Synopsis
  • The study investigated the effects of gamma-aminobutyric acid (GABA) and selective GABAergic ligands on acetylcholine (ACh) release at frog neuromuscular junctions using microelectrode techniques alongside fluorescent and immunohistochemical assays.
  • It was found that GABA significantly reduced ACh release; however, this effect wasn't completely reversed by GABA antagonists, indicating a complex interaction.
  • Additionally, GABA was shown to activate specific K7 potassium channels directly, suggesting that endogenous GABA may play a role in regulating neurotransmitter release during muscle contraction.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!