Heavy chain dimers as well as complete antibodies are efficiently formed and secreted from Drosophila via a BiP-mediated pathway.

J Biol Chem

Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.

Published: August 1995

We have constructed a stable Drosophila cell line co-expressing heavy chain (HC) and light chain (LC) immunoglobulins of a humanized monoclonal antibody (mAb) that recognizes the F antigen of respiratory syncytial virus (Tempest, P. R., Bremmer, P., Lambert, M., Taylor, G., Furze, J. M., Carr, F. J., and Harris, W. J. (1991) Bio/Technology 9, 266-271. These cells efficiently secrete antibody with substrate binding activity indistinguishable from that produced from vertebrate cell lines. Significantly, the Drosophila homologue of the immunoglobulin binding chaperone protein (BiP), hsc72, was found to interact specifically with the immunoglobulin HC in an ATP-dependent fashion, similar to the BiP-HC interaction known to occur in vertebrate cells. This is, in fact, the first substrate ever shown to interact specifically with Drosophila hsc72. Most surprisingly, expression of heavy chains in the absence of LC led to the efficient secretion of heavy chain dimers. Moreover, this secretion occurred in association with hsc72. This dramatically contrasts with what is seen in vertebrate cells where in the absence of LC, HC remains sequestered inside the cell in stable association with BiP. Our results clearly suggest that Drosophila BiP can substitute for its mammalian counterpart and chaperone the secretion of active IgG. However, the finding that Drosophila BiP can also uniquely chaperone heavy chain dimers indicates mechanistic differences that may relate to the evolved need for retaining immature IgGs in vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.34.19800DOI Listing

Publication Analysis

Top Keywords

heavy chain
16
chain dimers
12
vertebrate cells
8
drosophila bip
8
drosophila
6
heavy
5
dimers well
4
well complete
4
complete antibodies
4
antibodies efficiently
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!