Severe lactic acidosis usually accompanies intense endurance exercise. It has been postulated that glycogen depletion working in concert with elevated muscle and plasma lactate levels lead to a concomitant reduction in pH. Their cumulative effect during prolonged physical exertion now leads to muscular fatigue and eventually limit endurance capacity. Therefore in the present study, dichloroacetate (DCA), a compound which enhances the rate of pyruvate oxidation thus reducing lactate formation, has been evaluated in a validated rat model of sub-maximal exercise performance. Male rats (350 g) were divided into two groups (control-saline, i.v. and DCA 5 mg/kg, i.v.) and were exercised to exhaustion in a chamber (26 degrees C) on a treadmill (11 m/min, 6 degrees incline). When compared to controls, the DCA-treated rats had longer run times (169 vs 101 min) and a decreased heating rate (0.020 vs 0.029 degrees C/min). In addition, DCA attenuated the increase in plasma lactate (28 vs 40 mg/dl) and significantly reduced both the rate and absolute amount of depletion of muscle glycogen stores. These results suggest that the activation of pyruvate dehydrogenase activity by DCA resulted in a reduction in the rate of glycogenolysis in addition to decreasing lactate accumulation by presumably limiting the availability of pyruvate for conversion to lactate, therefore increasing muscle carbohydrate oxidation via the TCA cycle. Thus DCA effected a significant delay in muscle fatigue.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2007-972986DOI Listing

Publication Analysis

Top Keywords

lactate accumulation
8
rat model
8
plasma lactate
8
lactate
6
dca
5
effects dichloroacetate
4
dichloroacetate lactate
4
accumulation endurance
4
endurance exercising
4
exercising rat
4

Similar Publications

Probiotic active gel promotes diabetic wound healing through continuous local glucose consumption and antioxidant.

J Nanobiotechnology

January 2025

Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biological Medicine, School of Life Science and Technology, Shandong Second Medical University, 7166 # Baotong West Street, Weifang, Shandong, 261053, People's Republic of China.

Background: Diabetic foot ulcers (DFU) are severe complications of diabetes, posing significant health and societal challenges. Accumulation of reactive oxygen species (ROS) and elevated glucose levels are primary factors affecting diabetic wound healing. Achieving effective treatment by reducing ROS alone is challenging, as high glucose levels continuously drive ROS production.

View Article and Find Full Text PDF

Background: To investigate the antibiofilm effect and mechanism of the silver nanowire (AgNW)-modified glass ionomer cement (GIC) against multi-species oral biofilm, and to examine the mechanical and biochemical properties of this novel GIC material.

Methods: Conventional GIC was incorporated with different concentrations of AgNW and silver nanoparticles (AgNP). Multi-species biofilms of Streptococcus mutans, Streptococcus sobrinus, Lactobacillus fermentum, and Lactobacillus rhamnosus were cultured for 72 h on GIC specimens.

View Article and Find Full Text PDF

To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity.

View Article and Find Full Text PDF

Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining.

Cell Metab

January 2025

Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan, China; FuRong Laboratory, 410078 Changsha, Hunan, China. Electronic address:

The benefits of exercise for metabolic health occur in a dose-dependent manner. However, the adverse effects of overtraining and their underlying mechanisms remain unclear. Here, we show that overtraining induces hepatic fibrosis.

View Article and Find Full Text PDF

Hemolytic anemia (HA) is characterized by massive destruction of red blood cells (RBCs) and insufficient oxygen supply, which can lead to shock, organ failure, even death. Recent studies have preliminarily demonstrated the therapeutic effectiveness of whole blood exchange (WBE) in the management of acute hemolytic anemia and exhibited potential for reducing the duration of corticosteroid treatment, while the underlying mechanism of WBE therapy was not investigated in preclinical study. Hence, we investigate the therapeutic mechanisms of WBE in HA through established continued WBE therapy in rats creatively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!