A questionnaire was used to gather information regarding the prevalence of minor back symptoms related to performing everyday tasks, including sitting, lifting, etc. in a population of hospital employees. We studied 175 subjects, of whom 111 had not suffered a back injury. Of this group, 68 (61.3 per cent) had suffered back discomfort during or after performing everyday tasks. Sixty-four reported a previous injury to their back, and of these 55 (85.9 per cent) described back discomfort during or after performing everyday tasks. Of the symptomatic cases, 46 (83.3 per cent) maintained that they had no back symptoms prior to their injury, and attributed all of their back symptoms to the injury. The chi 2 test was used to test the null hypothesis that the group attributing their symptoms to injury was derived from the same population as the group who had not suffered any definite injury, and yet had back symptoms. This hypothesis was rejected (P < 0.001), indicating that there was a significant difference between these two groups. We conclude that individuals who sustain a back injury sometimes do not recall that they suffered symptoms prior to their injury. This may be of medico-legal importance in cases where compensation is being sought.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0020-1383(95)00021-zDOI Listing

Publication Analysis

Top Keywords

performing everyday
12
everyday tasks
12
injury
9
discomfort performing
8
symptoms prior
8
prior injury
8
symptoms injury
8
symptoms
7
perceived relationship
4
relationship symptoms
4

Similar Publications

Chemical transformation of polyurethane into valuable polymers.

Natl Sci Rev

January 2025

Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Polyurethanes are an important class of synthetic polymers, widely used in a variety of applications ranging from everyday items to advanced tools in societal infrastructure. Their inherent cross-linked structure imparts exceptional durability and flexibility, yet this also complicates their degradation and recycling. Here we report a heterogeneous catalytic process that combines methanolysis and hydrogenation with a CO/H reaction medium, effectively breaking down PU waste consisting of urethane and ester bonds into valuable intermediates like aromatic diamines and lactones.

View Article and Find Full Text PDF

Beyond conventional characterization: Defect engineering role for sensitivity and selectivity of room-temperature UV-assisted graphene-based NO₂ sensors.

Talanta

January 2025

Instituto de Magnetismo Aplicado, UCM-ADIF, Las Rozas, 28230, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid (UCM), 28040, Madrid, Spain. Electronic address:

The term graphene-based gas sensors may be too broad, as there are many physicochemical differences within the graphene-based materials (GBM) used for chemiresistive gas sensors. These differences condition the sensitivity, selectivity, recovery, and ultimately the sensing performance of these devices towards air pollutants. Continuous ultraviolet irradiation aids in the desorption of gas molecules and enhances sensor performance.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) models are emerging as promising tools to identify predictive features among data coming from health records. Their application in clinical routine is still challenging, due to technical limits and to explainability issues in this specific setting. Response to standard first-line immunotherapy (ICI) in metastatic Non-Small-Cell Lung Cancer (NSCLC) is an interesting population for machine learning (ML), since up to 30% of patients do not benefit.

View Article and Find Full Text PDF

Individual differences elucidate the perceptual benefits associated with robust temporal fine-structure processing.

Proc Natl Acad Sci U S A

January 2025

Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.

Article Synopsis
  • The auditory system can precisely track quick changes in sound, but the importance of this ability (temporal fine structure or TFS) for hearing is still debated.
  • Researchers studied 200 participants to see how TFS sensitivity affects speech perception in noisy environments.
  • Results showed that better TFS sensitivity helped more with listening in reverberant spaces and led to quicker responses, suggesting it plays a key role in everyday hearing experiences.
View Article and Find Full Text PDF

Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!