Classic multidrug resistance is characterized by a decrease in the intracellular concentration of drugs in resistant cells as compared to sensitive cells. This is correlated with the presence of P-glycoprotein in the membrane. P-glycoprotein is responsible for an active efflux of drug. In this study we investigated the correlation between P-glycoprotein and influx of daunorubicin. Four Ehrlich ascites tumour cell lines selected in vivo for resistance to daunorubicin were investigated. The sublines EHR2/0.1, EHR2/0.2, passage no. 12 of EHR2/0.8, EHR2/0.4, and passage no. 72 of EHR2/0.8 were 6-, 6-, 5-, 33-, and 35-fold resistant to daunorubicin, respectively. All sublines overexpressed P-glycoprotein as determined with Western blot. Influx was measured over 40 sec. In glucose-enriched medium influx was significantly decreased in all but one of the resistant sublines. A correlation between P-glycoprotein, degrees of resistance, and influx was demonstrated in four sublines. Comparing influx experiments with efflux experiments (Nielsen et al., Biochem Pharmacol 1994, 47, 2125-2135) we found a linear relationship between influx and efflux in the resistant sublines (r = 0.97). Verapamil (5.5 microM, 11.0 microM) increased influx significantly in all resistant sublines, whereas the drug had no effect on sensitive cells. Verapamil (3.3 microM) increased influx in the EHR2/0.8 (passage no. 72) subline to the level of sensitive cells. Comparing this result with efflux experiments, verapamil was found to increase influx preferentially. Depletion of energy (medium without glucose including Na(+)-azide) increased influx in all resistant sublines. In EHR2/0.4 and EHR2/0.8 (passage no. 72) the influx, however, was still significantly decreased after depletion of energy. In these cells further addition of verapamil increased influx to the level of EHR2. These data were consistent with the hypothesis that P-glycoprotein effluxes drug directly from the plasma membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(95)00172-v | DOI Listing |
Cancer Chemother Pharmacol
January 2025
Institute of Medicine, Chung-Shan Medical University, Taichung, 40201, Taiwan.
Objective: Based on our previous research, which demonstrated that elevated plasma endoglin (ENG) levels in lung cancer patients were associated with a better prognosis, increased sensitivity to pemetrexed, and enhanced tumor suppression, this study aims to validate these findings at the cellular level. The focus is on membrane and extracellular ENG and their influence on drug response and tumor cell behavior in non-small cell lung cancer (NSCLC) cells.
Methods: The correlation between ENG expression and pemetrexed-induced cytotoxicity in eight human non-squamous subtype NSCLC cell lines was analyzed.
J Clin Med
December 2024
Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan.
Prostate cancer (PCa) is a heterogeneous disease that exhibits androgen sensitivity and responsiveness to androgen deprivation therapy (ADT). However, ADT induces only temporary remission, and the majority of PCa cases eventually progress to castration-resistant PCa (CRPC). During the development and progression of CRPC, androgen sensitivity and androgen receptor (AR) dependency in PCa cells are often deceased or lost due to ADT or spontaneously arising AR variants even before starting ADT.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells.
View Article and Find Full Text PDFNPJ Precis Oncol
December 2024
Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA.
Triple-negative breast cancer (TNBC) presents therapeutic challenges due to limited targeted treatment options and resistance to chemotherapy drugs, such as doxorubicin. This study investigated doxorubicin resistance mechanisms and a strategy to overcome it. A doxorubicin-resistant cell subline (231-DR) was developed from MDA-MB-231 TNBC cells, and enhanced expression of cellular FLICE-inhibitory protein (cFLIP) in 231-DR cells was identified as a potential driver of the resistance.
View Article and Find Full Text PDFCell Syst
December 2024
National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20892, USA. Electronic address:
Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present a formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!