A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. | LitMetric

Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors.

Arch Biochem Biophys

Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown 26506-9142, USA.

Published: August 1995

Quinols can provide reducing equivalents for the membrane-bound form of methane monooxygenase (pMMO), substituting for NADH in whole cells and membranes. Furthermore, quinols are effective reductants for the detergent-solubilized enzyme, whereas NADH is ineffective. The decyl analog of plastoquinol and duroquinol (2,3,5,6-tetramethylbenzoquinol) provide the greatest methane monooxygenase activity in whole cells and membrane suspensions, as well as detergent-solubilized samples. Lauryl maltoside is by far the best detergent for solubilization of catalytically active methane monooxygenase. Optimal pMMO activity in the detergent-solubilized fraction is obtained with a ratio of approximately 1.7 mg of detergent per milligram of membrane protein, independent of protein concentration. The detergent-solubilized pMMO retains its sensitivity to inhibition by cyanide, acetylene, and EDTA. It is also stimulated by exogenous copper, as in isolated membrane fractions. Reaction of the detergent-solubilized enzyme with [14C]acetylene results in labeling of a 26-kDa peptide, analogous to the behavior observed for isolated membrane suspensions. The selectivity of pMMO for duroquinol and decyl-plastoquinol, relative to other structurally similar quinols, suggests that the enzyme obtains reducing equivalents directly from a quinol (probably plastoquinol) in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abbi.1995.1413DOI Listing

Publication Analysis

Top Keywords

methane monooxygenase
16
detergent solubilization
8
reducing equivalents
8
detergent-solubilized enzyme
8
membrane suspensions
8
isolated membrane
8
detergent-solubilized
5
solubilization membrane-bound
4
methane
4
membrane-bound methane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!