The 12- and 13-kDa FK506 binding proteins (FKBP12 and FKBP13) are cis-trans peptidyl-prolyl isomerases that bind the macrolides FK506 (Tacrolimus) and rapamycin (Sirolimus). The FKBP12.FK506 complex is immunosuppressive, acting as an inhibitor of the protein phosphatase calcineurin. We have examined the role of the key surface residues of FKBP12 and FKBP13 in calcineurin interactions by generating substitutions at these residues by site-directed mutagenesis. All mutants are active catalysts of the prolyl isomerase reaction, and bind FK506 or rapamycin with high affinity. Mutations at FKBP12 residues Asp-37, Arg-42, His-87, and Ile-90 decrease calcineurin affinity of the mutant FKBP12.FK506 complex by as much as 2600-fold in the case of I90K. Replacement of three FKBP13 surface residues (Gln-50, Ala-95, and Lys-98) with the corresponding homologous FKBP12 residues (Arg-42, His-87, and Ile-90) generates an FKBP13 variant that is equivalent to FKBP12 in its affinity for FK506, rapamycin, and calcineurin. These results confirm the role of two loop regions of FKBP12 (residues 40-44 and 84-91) as part of the effector face that interacts with calcineurin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.32.18935 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
Cyanotryptophans (CN-Trp) are privileged multimodal reporters on protein structure. They are similar in size to the canonical amino acid tryptophan and some of them exhibit bright fluorescence which responds sensitively to changes in the environment. We selected aminoacyl-tRNA synthetases specific for 4-, 5-, 6-, and 7-CN-Trp for high-yield in vivo production of proteins with a single, site-specifically introduced nitrile label.
View Article and Find Full Text PDFJ Gen Physiol
December 2024
Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology lab, Karolinska Institutet, Stockholm, Sweden.
The ryanodine receptor type 1 (RyR1) is a Ca2+ release channel that regulates skeletal muscle contraction by controlling Ca2+ release from the sarcoplasmic reticulum (SR). Posttranslational modifications (PTMs) of RyR1, such as phosphorylation, S-nitrosylation, and carbonylation are known to increase RyR1 open probability (Po), contributing to SR Ca2+ leak and skeletal muscle dysfunction. PTMs on RyR1 have been linked to muscle dysfunction in diseases like breast cancer, rheumatoid arthritis, Duchenne muscle dystrophy, and aging.
View Article and Find Full Text PDFHeliyon
October 2024
Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia.
Hypoalbuminemia, associated with inflammation in severely ill patients, can emerge due to decreased albumin production. Transforming growth factor-beta (TGF-β) and nuclear factor-kappa B (NF-κB) are critical signaling pathways responsible for decreased albumin expression. This study explores the protein content and modulation effects of Striatin on albumin synthesis and inflammation, employing proteomics and investigations.
View Article and Find Full Text PDFACS Cent Sci
May 2024
Centre for Inflammation Research, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
Immunosuppressants are clinically approved drugs to treat the potential rejection of transplanted organs and require frequent monitoring due to their narrow therapeutic window. Immunophilins are small proteins that bind immunosuppressants with high affinity, yet there are no examples of fluorogenic immunophilins and their potential application as optical biosensors for immunosuppressive drugs in clinical biosamples. In the present work, we designed novel diazonium BODIPY salts for the site-specific labeling of tyrosine residues in peptides via solid-phase synthesis as well as for late-stage functionalization of whole recombinant proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!