Monocrotaline is a very potent toxin, producing significant effects of pneumotoxicity, hepatotoxicity, and teratogenicity, as well as carcinogenicity. In addition, the compound has been clearly shown to be mutagenic after metabolic activation. The goal of the experiments reported here was to confirm the reported clastogenesis induced by this agent in vivo and to evaluate the impact of modulation of metabolic activity by phenobarbital, a potent P-450 inducer (both Phase I and Phase II enzymes). The method used in addressing this problem relied on a new technique for monitoring clastogenesis in vivo, i.e., the acridine orange micronucleus assay method originally exploited by Hayashi et al. [1990]. The result of our experiments confirmed monocrotaline to be an effective clastogen in vivo, using the acridine orange method of assessment. The peak in induction of micronuclei occurred on the second day following intraperitoneal administration of the drug. Administration of phenobarbital prior to monocrotaline did appear to modulate the micronucleus induction. At 30 mg/kg bw monocrotaline, the pretreatment with phenobarbital appears to increase the intensity of monocrotaline clastogenesis, while the effect at higher doses (60 and 125 mg/kg bw) is a reduction in potency, presumably reflecting increased importance of Phase II metabolism for monocrotaline at these doses. Thus the study reported here confirms the potent in vivo clastogenesis of monocrotaline, and provides evidence for a dose-related shift in mechanism for the phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.2850260106 | DOI Listing |
Lipophilicity and blood partitioning are important determinants for predicting toxicokinetics using physiologically-based toxicokinetic (PBTK) modeling. In this study, the logarithm of the -octanol:water partition coefficient (log) and the blood-to-plasma concentration ratio ( ) were for the first time experimentally determined for the pyrrolizidine alkaloids (PAs) intermedine, lasiocarpine, monocrotaline, retrorsine and their -oxides (PANOs). Validated assays for log (miniaturized shake-flask method) and (LC-MS/MS-based depletion assay) determination were compared to an ensemble of models.
View Article and Find Full Text PDFCan J Physiol Pharmacol
January 2025
Dalhousie University, Department of Physiology and Biophysics, Halifax, Canada;
A growing body of evidence suggest that the stem cell antigen-1 expressing (Sca-1) cells in the heart may be the cardiac endothelial stem/progenitor cells. Their endothelial cell (EC) functions, and their role in RV physiology and pathophysiology of right heart failure (RHF) remains poorly defined. This study investigated EC characteristics of rat cardiac Sca-1 cells, assessed spatial distribution and studied changes in Sca1 cells during RV remodelling in monocrotaline (MCT) model of pulmonary hypertension and RV remodeling.
View Article and Find Full Text PDFCirculation
January 2025
Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Center, Quebec City, QC, Canada (S.-E.L., Y.G., T.Y., T.S., M.M., C.R., M.S., S.B.-B., A.B., C.T., A.P., R.E.K., S.M., K.Y., F.P., S.P., O.B., S.B.).
Background: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PAs) and progressive increase in pulmonary vascular resistance leading to right ventricular failure. Although several drugs are approved for the treatment of PAH, mortality rates remain high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
This study introduced a novel dual fixation method for the pulmonary vasculature and lung tissue in pulmonary hypertension (PH) rats, addressing the limitations of traditional fixation methods that failed to accurately preserve the in vivo status of pulmonary vascular morphology. The modified method involved a dual fixation process, combining individualized ventilation support and vascular perfusion to simulate the respiratory motion, pulmonary artery pressure and right ventricular output of the rat under in vivo conditions. Utilizing a monocrotaline-induced PH rat model, this study compared the dual fixation with the traditional immersion fixation, focusing on the quantitative assessment of alveolar expansion degree, capillary patency, endothelial cell quantity and wall thickness of pulmonary vein and artery.
View Article and Find Full Text PDFPhytomedicine
February 2025
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!