We conducted quantification of proton MR spectroscopy (1H-MRS) using water signal as an internal standard. The 1H-MR spectrum was measured with and without water suppression pulses. For calculation of relaxation times, measurement conditions of the PRESS sequence were as follows: TR = 1500, 3000, 5000 ms, TE = 135,270 ms. The T1 relaxation and T2 relaxation of each metabolite were calculated by fitting to the curve of the equation of the spin echo sequence. The signal intensities of each metabolite were corrected using relaxation times and such corrected intensities were used for the quantitative calculation. The concentration of each metabolite was obtained from ratios of the corrected intensities of water and metabolites. The value of each concentration was coincident with that reported in the previous literature. We considered that this quantification using water signal as an internal standard would be very useful when the proton-weighted image does not show remarkable change.

Download full-text PDF

Source

Publication Analysis

Top Keywords

relaxation times
12
water signal
12
signal internal
12
quantification proton
8
proton spectroscopy
8
internal standard
8
corrected intensities
8
relaxation
5
water
5
trial quantification
4

Similar Publications

(ZnO) Cluster Decorated 2D Porous CN Materials as Efficient Solar Cells.

J Phys Chem A

January 2025

College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.

Developing high-performance solar cells is a practical way to improve clean energy conversion efficiency. However, the performance of solar cells faces challenges such as fast carrier combination, poor stability, and limited solar light harvesting. Herein, we propose a strategy by decorating periodic holes in two-dimensional (2D) porous carbon-nitrogen (CN) materials with a zero-dimensional (0D) semiconducting (ZnO) cluster.

View Article and Find Full Text PDF

Determination of the degree of sulfonation in cross-linked and non-cross-linked Poly(ether ether ketone) using different analytical techniques.

Heliyon

January 2025

Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.

The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.

View Article and Find Full Text PDF

A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.

View Article and Find Full Text PDF

Achieving dual functionalities of hydrophobicity and excellent microwave transmission in a single material remains a significant challenge, especially for advanced applications in aerospace, telecommunications, and navigation engineering. Inspired by natural designs like chestnut burrs, bioinspired polyaniline (PANI) particles with tunable micro-/nanostructures through a facile template-free polymerization process have been developed. By regulating the polarity of the reaction system, temperature, and reaction time, various hierarchical structures, including cross-linked nanosheets, chestnut burr-like spheres, and starburst flower-like structures, are synthesized.

View Article and Find Full Text PDF

This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!