The binding domains of four monoclonal antibodies (MAbs) specific for the M protein of the PUR46-MAD strain of transmissible gastroenteritis coronavirus (TGEV) have been located in the 46 carboxy-terminal amino acids of the protein by studying the binding of MAbs to recombinant M protein fragments. Immunoelectron microscopy using these MAbs demonstrated that in a significant proportion of the M protein molecules, the carboxy terminus is exposed on the external surface both in purified viruses and in nascent TGEV virions that recently exited infected swine testis cells. The same MAbs specifically neutralized the infectivity of the PUR46-MAD strain, indicating that the C-terminal domain of M protein is exposed on infectious viruses. This topology of TGEV M protein probably coexists with the structure currently described for the M protein of coronaviruses, which consists of an exposed amino terminus and an intravirion carboxy-terminal domain. The presence of a detectable number of M protein molecules with their carboxy termini exposed on the surface of the virion has relevance for viral function, since it has been shown that the carboxy terminus of M protein is immunodominant and that antibodies specific for this domain both neutralize TGEV and mediate the complement-dependent lysis of TGEV-infected cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC189361PMC
http://dx.doi.org/10.1128/JVI.69.9.5269-5277.1995DOI Listing

Publication Analysis

Top Keywords

protein molecules
12
protein
9
transmissible gastroenteritis
8
gastroenteritis coronavirus
8
external surface
8
surface virion
8
pur46-mad strain
8
molecules carboxy
8
carboxy terminus
8
membrane protein
4

Similar Publications

Design of a light and Ca switchable organic-peptide hybrid.

Proc Natl Acad Sci U S A

February 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.

View Article and Find Full Text PDF

Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR).

View Article and Find Full Text PDF

Endometrial cancer (UCEC) is the most prevalent gynecological malignancy in high-income countries, and its incidence is rising globally. Although early-stage UCEC can be treated with surgery, advanced cases have a poor prognosis, highlighting the need for effective molecular biomarkers to improve diagnosis and prognosis. In this study, we analyzed mRNA and miRNA sequencing data from UCEC tissues and adjacent non-cancerous tissues from the TCGA database.

View Article and Find Full Text PDF

Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.

View Article and Find Full Text PDF

Accurate Physics-Based Prediction of Binding Affinities of RNA- and DNA-Targeting Ligands.

J Chem Inf Model

January 2025

Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.

Article Synopsis
  • Predicting how well ligands bind to nucleic acids is challenging, which limits the development of small-molecule drugs for diseases like cancer and infections.
  • Recent advancements in computational methods, particularly free-energy perturbation (FEP), have improved predictions for protein-ligand binding affinities, but its effectiveness for nucleic acids was unclear.
  • This study found that using FEP+ software with the OPLS4 force field can accurately predict binding energies for over 100 ligands interacting with DNA/RNA, achieving predictions that closely match experimental data and could aid drug discovery.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!