We have recently shown (Chang et al., 1995) that lipid-channel interactions, exemplified by the effects of cholesterol on the calcium-activated potassium (BK) channel, profoundly affect channel properties. The present study further explores such interactions by monitoring changes in BK channel behavior after reconstitution into bilayers where the size of phospholipid (PL) headgroups is increased and where the freedom of motion (inverse order) of fatty acid chains is incremented. Increasing the PL headgroup cross-sectional area, from that of N-meth-DOPE to that of DOPC (an increase from ca. 60 to 70 A2), is associated with a doubling of the channel mean opentime. Channel conductance, however, was unaffected. Increasing the order of the fatty acid chains, from that of DOPE to POPE and to that of DEPE, had no significant effect on channel properties (at 22 degrees C). We interpret the changes reported here to reflect lipid-protein interactions through the induction of structural stress related to the headgroup structures of phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00233303DOI Listing

Publication Analysis

Top Keywords

channel behavior
8
channel properties
8
order fatty
8
fatty acid
8
acid chains
8
channel
7
lipid-ion channel
4
interactions
4
channel interactions
4
interactions increasing
4

Similar Publications

Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.

View Article and Find Full Text PDF

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

Gender inequalities in prescribing and initiation patterns of guideline-recommended drugs after acute myocardial infarction.

BMC Public Health

January 2025

Grupo de Investigación en Servicios Sanitarios de Aragón (GRISSA), Fundación Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.

Background: European guidelines recommend the prescription of certain drugs after acute myocardial infarction (AMI). The existence of gender differences in pharmacological treatment after an AMI has been described. This study aims to describe and analyse, using real-world data (RWD), whether there are gender differences in the prescribing patterns and initiation of treatment in secondary prevention after a first AMI, and which are the factors that explain these differences.

View Article and Find Full Text PDF

A biophysical basis for the spreading behavior and limited diffusion of Xist.

Cell

January 2025

Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. Electronic address:

Xist RNA initiates X inactivation as it spreads in cis across the chromosome. Here, we reveal a biophysical basis for its cis-limited diffusion. Xist RNA and HNRNPK together drive a liquid-liquid phase separation (LLPS) that encapsulates the chromosome.

View Article and Find Full Text PDF

Introducing PES porous membrane to establish bionic autocrine channels: A lubricating, anti-wear antifouling coating.

Mar Pollut Bull

January 2025

Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:

As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!