Prolonged myocardial cell damage initiated by acute myocarditis is thought to be one of the most important etiology of dilated cardiomyopathy. To investigate the immunological mechanisms involved in the pathogenesis of dilated cardiomyopathy, we analyzed the phenotypes of infiltrating cells and examined the expression of perforin in infiltrating cells in the hearts of patients with dilated cardiomyopathy as well as acute myocarditis. We also examined the expression of HLA and intercellular adhesion molecule-1 (ICAM-1) in myocardial tissue of these patients. Furthermore, to evaluate the antigen specificity of infiltrating T cells and persistence of viral genomes in the myocardial tissue, we analyzed the expression of T cell receptor (TCR) V alpha and V beta genes as well as enterovirus genomes by PCR. We found infiltration of perforin-expressing killer cells and enhanced expression of HLA class I and ICAM-1 in the myocardial tissue. We also found that the repertoires of TCR V alpha as well as V beta gene transcripts were restricted, indicating that a specific antigen in the hearts was targeted. Because no enterovirus genomes were detected in all patients, it is strongly suggested that a cell-mediated autoimmune mechanism triggered by virus infection may play a critical role in the pathogenesis of dilated cardiomyopathy. However, we could not exclude the possibility that viruses other than enteroviruses could be pathogenic in these patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC286383 | PMC |
http://dx.doi.org/10.1172/JCI118089 | DOI Listing |
Chin Med
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
Background: Dilated cardiomyopathy (DCM) stands as one of the most prevalent and severe causes of heart failure. Inflammation plays a pivotal role throughout the progression of DCM to heart failure, while age acts as a natural predisposing factor for all cardiovascular diseases. These two factors often interact, contributing to cardiac fibrosis, which is both a common manifestation and a pathogenic driver of adverse remodeling in DCM-induced heart failure.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
Department of Microbiology, Gargi College, University of Delhi, New Delhi, India. Electronic address:
The CRISPR-Cas system has emerged as a revolutionary tool in genetic research, enabling highly precise gene editing and significantly advancing the field of cardiovascular science. This chapter provides a comprehensive overview of the latest developments in utilizing CRISPR-Cas technologies to investigate and treat heart diseases. It delves into the application of CRISPR-Cas9 for creating accurate models of complex cardiac conditions, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and various arrhythmias, which are essential for understanding disease mechanisms and testing potential therapies.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:
Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Assistance Publique Hopitaux de Paris (APHP), Pitié-Salpêtrière Hospital, Institute of Cardiology and Institute for Cardiometabolism and Nutrition, Paris, France (A.H., M.L., P. Charron, E.G.).
JACC Case Rep
December 2024
Centro Cardiologico Monzino, IRCCS, Milan, Italy.
A 71-year-old woman with dilated cardiomyopathy underwent an echocardiogram showing new onset of multiple mobile left ventricular masses. She experienced a mild COVID-19 infection 1 month before. After a multimodality imaging evaluation, vitamin K antagonist treatment was started, with progressive reduction of the masses without clinical events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!