Machado--Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration mapped to chromosome 14q32.1. The CAG expansions of the MJD1 gene was identified as the cause of the disease. We have analyzed 90 MJD individuals from 62 independent MJD families and found that the MJD1 repeat length is inversely correlated with the age of onset (r = -0.87). The MJD chromosomes contained 61-84 repeat units, whereas normal chromosomes displayed 14-34 repeats. In the normal chromosomes, 14 repeat units were the most common and the shortest. In association with the clinical anticipation of the disease, a parent--child analysis showed the unidirectional expansion of CAG repeats and no case of diminution in the affected family. The differences in CAG repeat length between parent and child and between siblings are greater in paternal transmission than in maternal transmission. Detailed analysis revealed that a large degree of expansion was associated with a shorter length of MJD1 gene in paternal transmission. On the other hand, the increments of increase were similar for shorter and longer expansion in maternal transmission. Among the three clinical subtypes, type I of MJD, with dystonia, showed a larger degree of expansion in CAG repeats of the gene and younger ages of onset than the other types.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/4.5.807DOI Listing

Publication Analysis

Top Keywords

cag repeats
12
mjd1 gene
8
repeat length
8
repeat units
8
normal chromosomes
8
expansion cag
8
paternal transmission
8
maternal transmission
8
degree expansion
8
cag
5

Similar Publications

Total functioning capacity scale in Huntington's disease: natural course over time.

J Neurol

January 2025

LUMC Department of Neurology, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.

Background And Objectives: The total functioning capacity (TFC) assessment has been integral to Huntington's disease (HD) research and clinical trials, measuring disease stage and progression. This study investigates the natural progression of function in HD, focusing on changes in TFC scores related to age and CAG-repeat length, and evaluates TFC's strengths and weaknesses in longitudinal studies.

Methods: Using Enroll-HD platform's clinical dataset version 5, including Registry-3, we analysed data from 21,079 participants, with 16,083 having an expanded CAG repeat.

View Article and Find Full Text PDF

Biomolecular condensation lays the foundation of forming biologically important membraneless organelles, but abnormal condensation processes are often associated with human diseases. Ribonucleic acid (RNA) plays a critical role in the formation of biomolecular condensates by mediating the phase transition through its interactions with proteins and other RNAs. However, the physicochemical principles governing RNA phase transitions, especially for short RNAs, remain inadequately understood.

View Article and Find Full Text PDF

RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models.

Mol Neurodegener

January 2025

Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.

Background: HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention.

Methods: The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA.

View Article and Find Full Text PDF

Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.

View Article and Find Full Text PDF

has been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!