The effect of selenium on the lethal action of ultraviolet radiations and on the lipid peroxidation induced by exposures to ultraviolet A (320-400 nm; 360 kJ.m-2) and ultraviolet B (290-320 nm; 2 kJ.m-2) have been measured in cultured human skin fibroblasts. The experiments have been performed with either pure selenium or a spring water containing selenium and other trace elements (zinc and strontium). For cells cultured in a standard medium containing 10% fetal calf serum, no effect of selenium or spring water addition to the culture medium was observed on the lethality or on the peroxidative process induced by ultraviolet A and B radiations. Concurrently, there was no detectable increase of the seleno-dependent glutathione peroxidase activity. For cells previously depleted in selenium by a culture in a medium containing only 2% serum, a protective effect of selenium can be detected. Depending on the fibroblast donor, we observed (1) a protective effect on lethality of dividing fibroblasts induced by ultraviolet A radiations, (2) a protective effect on lipid peroxidation induced by ultraviolet A radiations on dividing or quiescent fibroblasts and (3) an increase in glutathione peroxidase activity in fibroblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000211337 | DOI Listing |
Sci Rep
January 2025
Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, 10032, USA.
Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured.
View Article and Find Full Text PDFSci Rep
January 2025
NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA, USA.
As we assess the habitability of other worlds, we are limited by being able to only study terrestrial life adapted to terrestrial conditions. The environments found on Earth, though tremendously diverse, do not approach the multitude of potentially habitable environments beyond Earth, and so limited terrestrial adaptive capabilities tell us little about the fundamental biochemical boundaries of life. One approach to this problem is to use experimental laboratory evolution to adapt microbes to these novel environmental conditions.
View Article and Find Full Text PDFScience
January 2025
Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
The recent discovery of nonvisual photoreceptors in various organs has raised expectations for uncovering their roles and underlying mechanisms. In this work, we identified a previously unrecognized hormone-releasing mechanism in the pituitary of the Japanese rice fish (medaka) induced by light. Ca imaging analysis revealed that melanotrophs, a type of pituitary endocrine cell that secretes melanocyte-stimulating hormone, robustly increase the concentration of intracellular Ca during short-wavelength light exposure.
View Article and Find Full Text PDFFront Public Health
January 2025
NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia.
Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB.
View Article and Find Full Text PDFPLoS One
December 2024
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan.
Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!