Development of metabolic enzyme activity in locomotor and cardiac muscles of the migratory barnacle goose.

Am J Physiol

School of Biological Sciences, Department of Physiology, University of Birmingham, Edgbaston, United Kingdom.

Published: July 1995

Preflight development of the goslings was typified by rapid increases in the mitochondrial enzymes of the semimembranosus and heart ventricular muscles resulting in near-adult values by 3 wk of age. In contrast, aerobic capacity of the pectoralis muscle initially developed slowly but showed a rapid increase between 5 and 7 wk of age, in preparation for becoming airborne. Activities of glycolytic enzymes in the pectoralis muscle showed similar patterns of development as those found for the aerobic enzymes, except for hexokinase, which was low at all ages, indicating an adaptation for catabolism of both intracellular glycogen and plasma fatty acids in preference to plasma glucose. Muscle mass specific activity of citrate synthase in the pectoralis increased by only 33% from goslings during the first few days of flight, compared with premigratory geese. Activities of anaerobic glycolytic enzymes in the ventricles were low, but values for hexokinase, which is involved in the phosphorylation of plasma glucose, developed rapidly. Values for lactate dehydrogenase were also high, reflecting the capacity of the heart to catabolize plasma lactate. Substrate flux supplied by carnitine palmitoyltransferase and oxoglutarate dehydrogenase (OGD), in the pectoralis muscles of the premigratory geese, appears to have the smallest excess capacities to meet the requirements of sustained aerobic flight. The average maximum oxygen uptake for premigratory geese during flight, as indicated by values for OGD, is calculated to be 484 ml O2/min (or 208 ml O2.min-1.kg-1).

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.1995.269.1.R64DOI Listing

Publication Analysis

Top Keywords

premigratory geese
12
pectoralis muscle
8
glycolytic enzymes
8
plasma glucose
8
development metabolic
4
metabolic enzyme
4
enzyme activity
4
activity locomotor
4
locomotor cardiac
4
cardiac muscles
4

Similar Publications

Climate warming advances the optimal timing of breeding for many animals. For migrants to start breeding earlier, a concurrent advancement of migration is required, including premigratory fueling of energy reserves. We investigate whether barnacle geese are time constrained during premigratory fueling and whether there is potential to advance or shorten the fueling period to allow an earlier migratory departure.

View Article and Find Full Text PDF

Background: Relationships between microbial composition and steatosis are being extensively studied in mammals, and causal relations have been evidenced. In migratory birds the liver can transiently store lipids during pre-migratory and migratory phases, but little is known about the implications of the digestive microbiota in those mechanisms. The Landaise greylag goose (Anser anser) is a good model to study steatosis in migratory birds as it is domesticated, but is still, from a genetic point of view, close to its wild migratory ancestor.

View Article and Find Full Text PDF

Hypertrophy of the flight muscles is regularly observed in birds prior to long-distance migrations. We tested the hypothesis that a large migratory bird would increase flight behaviour prior to migration, in order to cause hypertrophy of the flight muscles, and upregulate key components of the aerobic metabolic pathways. Implantable data loggers were used to record year-round heart rate in six wild barnacle geese (Branta leucopsis), and the amount of time spent in flight each day was identified.

View Article and Find Full Text PDF

We have tested the hypothesis that a large (2 kg) migratory bird, such as the barnacle goose Branta leucopsis, becomes hypothermic before its autumn migration, when food is not scarce, but when it is necessary to conserve and/or store energy in the form of fat. Abdominal temperature (T(ab)) was measured in wild geese using an implanted data logger. Commencing a few days before and continuing until approximately 20 days after the start of their autumn migration, mean daily T(ab) fell progressively by 4.

View Article and Find Full Text PDF

The development of the locomotory muscles and associated skeletal structures of goslings and adults from a captive population of barnacle geese (Branta leucopsis) was compared with that from a wild migratory population. There was no significant difference between flight-muscle development of wild and captive goslings up to 7 wk of age, when the birds are first able to fly. In contrast, mass-specific citrate-synthase activity in the semimembranosus leg muscle of the captive goslings was significantly lower than that of wild goslings by 5 wk of age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!