The nuclear vitamin D receptor (VDR) binds the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) hormone with high affinity and elicits its actions to stimulate gene expression in target cells by binding to the vitamin D-responsive element (VDRE). VDREs in such positively controlled genes as osteocalcin, osteopontin, beta 3 integrin and vitamin D-24-OHase are direct hexanucleotide repeats with a spacer of three nucleotides. The present studies of VDR/VDRE interaction utilized full-length human vitamin D receptor (hVDR) that was overexpressed in E. coli, purified to near homogeneity (> 95%), and its authenticity confirmed by demonstrating high affinity hormone binding and reactivity to monoclonal antibody 9A7 gamma. The expressed hVDR displays strict dependence on the family of retinoid X receptors (RXRs) for binding to the vitamin D-responsive element (VDRE) in the rat osteocalcin gene. Similar overexpression in E. coli of the DNA binding domain (delta 134), containing only residues 4-133 of hVDR, generated a receptor species that possesses intrinsic DNA binding activity. Both full-length and delta 134 hVDRs retain similar DNA binding specificities when tested with several natural hormone responsive elements, indicating that the N-terminal zinc finger region determines hVDR-DNA sequence selectivity. The C-terminal region of the molecule is required for hormone binding and confers the receptor with the property of very high affinity DNA binding, via heterodimerization between hVDR and RXR. A natural ligand for the RXR co-receptor, 9-cis retinoic acid, suppresses both VDR-RXR binding to the VDRE and 1,25(OH)2D3 stimulated transcription, indicating that 9-cis retinoic acid recruits RXR away from VDR to instead form RXR homodimers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0960-0760(95)00112-d | DOI Listing |
Malays J Pathol
December 2024
National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.
Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Adv Sci (Weinh)
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.
View Article and Find Full Text PDFSci Rep
December 2024
Univ. Grenoble Alpes, CEA, Inserm, IRIG, UA13 BGE, Biomics, Grenoble, 38000, France.
Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!