Reduction of nitric oxide (NO) to nitrous oxide (N2O) is catalyzed by bovine heart cytochrome c oxidase (CcO) in anaerobic solutions at pH 7.2 and 20 degrees C. Cyanide inhibits and forms Fea3(3+)CN. The mononitrosyl (Fea3(2+)NO), but not the dinitrosyl (Fea3(2+)NO; CuB+NO), is a likely intermediate in N2O formation. One-electron reduction of NO at Fea3(2+) could yield N2O via HNO. However, a two-electron reduction of the NO ligand to give an intermediate that reacts with a second NO to give N2O and H2O appears more likely. Conversion of NO to N2O is favored by low levels of both NO and O2, higher NO levels can inhibit both cytochrome c oxidase and NO reductase activities. Raising the O2 level will favor catalysis of NO oxidation to NO2 by CcO. The reactions of NO and the specific CcO activity that occur in tissue will be critically dependent on NO, O2, and CcO levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1995.2076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!