Does the ternary complex act as a secondary proton pump and a GTP synthase?

Trends Pharmacol Sci

Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.

Published: May 1995

It has been suggested that G protein-coupled receptors can act as proton transporters, with the activated G protein-coupled receptor transporting H+ across the membrane from the extracellular side to the cytoplasm. In this article, Paul Nederkoorn, Henk Timmerman and Gabriëlle Donné-Op den Kelder summarize the various H+ translocation mechanisms and how these compare with activated G protein-coupled receptors. The G protein, being part of the ternary complex, is proposed to use translocated protons to synthesize GTP from GDP and Pi, thus functioning in a similar manner to ATP synthase. The importance of these events in physiological effects such as signal amplification is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-6147(00)89008-2DOI Listing

Publication Analysis

Top Keywords

ternary complex
8
protein-coupled receptors
8
activated protein-coupled
8
complex secondary
4
secondary proton
4
proton pump
4
pump gtp
4
gtp synthase?
4
synthase? suggested
4
suggested protein-coupled
4

Similar Publications

Two ligands of Arp2/3 complex, yeast coronin and GMF, interact and synergize in pruning branched actin networks.

J Biol Chem

January 2025

Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA. Electronic address:

The rapid turnover of branched actin networks underlies key in vivo processes such as lamellipodial extension, endocytosis, phagocytosis, and intracellular transport. However, our understanding of the mechanisms used to dissociate, or 'prune', branched filaments has remained limited. Glia maturation factor (GMF) is a cofilin family protein that binds to Arp2/3 complex and catalyzes branch dissociation.

View Article and Find Full Text PDF

Na-concentration dependent conformational switch of oncogene RET G-quadruplex DNA in solution.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Proto-oncogene RET is overexpressed in many cancers, and its expression level is positively related to the size and malignancy of the tumors. Effective inhibition of its overexpression can be used to potentially treat cancers. A guanine-rich GC-boxes (I-V) sequence in its promoter region folds into noncanonical G-quadruplex (G4) DNA structures, negatively regulating its expression by interactions with small molecules.

View Article and Find Full Text PDF

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.

View Article and Find Full Text PDF

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!