Rapid and reliable measurement of acetylcholinesterase (AChE) activity is of crucial importance to the pharmacodynamic monitoring of anticholinesterase drugs. A new assay has been developed to measure AChE from 10 microliter samples of capillary blood. AChE activity was calculated from the change in pH of the reaction medium caused by the hydrolysis of acetylcholine and measured with a highly sensitive differential pH apparatus (CL-10, Eurochem, Rome, Italy). Interference by butyrylcholinesterase was eliminated by a specific inhibitor, quinidine sulfate. The assay lasts 1 min. The coefficient of variation (CV) for replicated measurements was 2.8% (3267 U/L, n = 33). Linearity ranged from 0 to 10,000 U/L. The correlation coefficient between the new technique and Ellman's colorimetric method on washed erythrocytes was r = 0.987 (y = 1.299x - 63, n = 29). The correlation coefficient between assays on capillary and venous samples was r = 0.979 (y = 0.974x + 174, n = 47). A cross-laboratory validation study was performed in 10 centers using glycerol-stabilized hemolysates with normal and reduced AChE activity. Samples were assayed in triplicate. The within- and between-laboratory CVs for samples with normal AChE activity (6,018 U/L) were 2.2 and 8.1%, respectively. The new method was applied to a double-blind, placebo-controlled multicenter study of eptastigmine in Alzheimer patients and proved to be a simple, noninvasive, rapid, and reliable method for pharmacodynamic monitoring of this drug.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00007691-199506000-00004DOI Listing

Publication Analysis

Top Keywords

ache activity
16
measurement acetylcholinesterase
8
rapid reliable
8
pharmacodynamic monitoring
8
correlation coefficient
8
activity
5
ache
5
patient-side technique
4
technique real-time
4
real-time measurement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!