In order to extend the static information of immunolabelling sulphogalactolipids in fixed boar spermatozoa, a fluorescent sulphogalactolipid analogue, galactose(3-sulphate)-beta 1-1'[(N-lissamine rhodaminyl)-12-aminodode-canoyl]-sphingosine, was incorporated into plasma membranes of living spermatozoa and its lateral distribution over the sperm head was studied. The fluorescent lipid was enriched in the apical ridge subdomain of freshly ejaculated sperm cells. After sperm binding to the zona pellucida the lipid redistributed to the equatorial segment of the sperm surface. A similar shift occurred during capacitation in vitro with 2 mM CaCl2 or with 4% (w/v) bovine serum albumin. The desulphated derivative galactose-beta 1-1'[(N-lissamine rhodaminyl)-12-aminododecanoyl]-sphingosine was also incorporated into the plasma membrane of freshly ejaculated sperm cells and clearly stained the apical ridge subdomain and the (pre)-equatorial subdomains of the sperm heads. The desulphogalactolipid analogue showed a slightly faster migration to the equatorial segment of the sperm plasma membrane than did its sulphated counterpart. The measured fluorescence intensity distributions correlated linearly with the spatial probe distribution, which was checked by fluorescence lifetime imaging microscopy. The observed migration of the incorporated glycolipids precedes the acrosome reaction and is one of the underlying molecular events likely to be important in the process of sperm capacitation. The results of this study suggest that lipid phase segregation is an important driving force for the organization of the sperm head plasma membrane into subdomains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.108.3.935 | DOI Listing |
J Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFInfectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon.
View Article and Find Full Text PDFNat Rev Immunol
January 2025
Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China.
Gastric cancer (GC) is a prevalent malignant tumor of the digestive system that is often diagnosed at advanced stages owing to inconspicuous early symptoms and a lack of specific examination methods. Effective treatment of advanced stages remains challenging, emphasizing the need for new therapeutic targets. Metabolic reprogramming, a hallmark of tumors, plays a pivotal role in tumor progression, immune evasion, and immune surveillance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!