A kinetic study is made of a system consisting of a specific enzymic cycling assay coupled to an enzymic reaction. A kinetic analysis of this system is presented, and the accumulation of chromophore involved in the cycle is seen to be parabolic, i.e. the rate of the reaction increases continuously with constant acceleration. The system is illustrated by the measurement of alkaline phosphatase activity using beta-NADP+ as substrate. The enzymes alcohol dehydrogenase and diaphorase are used to cycle beta-NAD+ in the presence of ethanol and p-Iodonitrotetrazolium Violet. During each turn of the cycle, one molecule of the tetrazolium salt is reduced to an intensely coloured formazan. A simple procedure for evaluating the kinetic parameters involved in the system and for optimizing this cycling assay is described. The method is applicable to the measurement of any enzyme, and its amplification capacity as well as the simplicity of determining kinetic parameters enable it to be employed in enzyme immunoassays to increase the magnitude of the measured response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1135817 | PMC |
http://dx.doi.org/10.1042/bj3090181 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry and Chemical Engineering, Xian Yang Normal University, Xian Yang, China.
Context: This study investigates the reaction mechanism of luteolin with selenium dioxide in ethanol. Through a detailed search for transition states and thermodynamic energy calculations, it was found that the reaction proceeds via two possible pathways, leading to the formation of products P1 and P2, respectively. A common feature of both pathways is that the first elementary step results in the formation of the intermediate INT1.
View Article and Find Full Text PDFClin Nucl Med
January 2025
From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
Purpose: The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202, United States.
Time-resolved small-angle X-ray experiments are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in the folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 24.3 to 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!